Lhogho: The Real Logo Compiler

User Documentation

Authors: Pavel Boytchev, Peter Armyanov, Michael Downes

February 2012

Lhogho: The Real Logo Compiler User Documentation

Table of Contents

Chapter 1 INtroductionccccccveeeecccsssnneeccsssssnssscsssssssssssssssssssssssssssssssss®

General INTOTMATIONc...eiuieiieieeiiett ettt sttt es 6
(1) ADOUL LROZNO ..ottt ettt st esseeseenseenseesaenseenneen 6
02 T T 4 11 TSRS 6

QUICK STATT....eeieiiieeeeiiee ettt ettt e et e e et e e e eetaeeeeeeaaeeeeeeaaaeeeeeenraeeeanns 7
(1) Getting LROZRO. .. .ottt ettt e nean 7
(2) USING LROGNO ..ttt ettt ettt sb et ae et e st e e e nee 7
(3) NOn-English LROGNOco.eiiiiiiiiiieeee ettt 9

SCTIPEINE . ..eeeetieiieeie ettt ettt ettt e et e st e esbeesaeeebeesseeasseessseenseessseasseensseensaenseeanns 9
(1) WINAOWS CONSOLEvieuiieiiiieiiieieeie ettt et ettt e ste et e esbeessesaaeseaesseesseessesssesssesseensenns 10
(2) LINUX CONSOLE ...eoutieiiieiieiieiieteete ettt ettt ettt et et et e esbessaessaeseesseensesnnesseesseenseensenns 10

Compiling the COMPILETceoiiiiiiiiiieieeie e 10

Additional INFOrMAtIONceeiiiiiiiie et 10

Chapter 2 Syntax and ToKkenizationcoeeeeersueencssneeecssnneccssnnenenn 11

LLOZO SYNEAX..etiiiiiiiieeeeiiiee ettt ettt e e et e e e et ae e e e eate e e e e e nnbeeeeennnaeeeeenneeas 11
(1) OVEIVIEW weeevieiiiieeitecite et etee et e e te e e teesbeesabeeeabaeaabeessseeassaeanseeansaeanseeansaeenseeansseenseeanssennseenn 11
(2) DALA LYPES .eiveietierieiieiieeteetestee st eteebeeetesteessee st esseesseess e se e seenseansessaesraesseenseenseesaeeseensaenseans 11
(3) ParenthESES ...ccuvieuiieiiiciieeiieieete ettt sttt ettt e et e et te et e et e e st e e ta e te e beerbeeraesraesreenreenbeenseens 12
(4) Programming ENLItICScceecvreeuerierierteesieesteeetestesseesseeseeseessesseesseesseeseesessesseesseessessseans 12
(5) User commands and OPETAtiONS............ccueeverierierirereeteneiesteesseesesaeseeesseesseesesssesseessessseens 13
(6) Variable NUMDET Of INPULSeovuieiieiieie ettt e s e beeae e sseeseenseees 13
(7) Prefix, infix and postfiX NOTATIONScceirierieiieiiee ettt 14

Tokenization Of dataccccviiiiiiiiieie e e 15
(1) COMIMENLS.....ceiitieeiieeiieeiteeetteeteeeteeeteeeteeebeeebeeesseeesseeasseeanseeanseeenseeansaeenseeanssesnsseessesnseenn 16
(2) LiNE CONMIMUATION. ...ceiuiieireesiiieeieenieesteesteesteesteesseeesseessseessseeanseessseesnseesssessseesseesnseesnseenn 16
(3) BaACKSIASNES ...cuveevieiiciiiciiecieeceeee ettt ettt ettt e e e ae e beenbeeraeeseenraenseens 17
(B) BATS oottt ettt ettt e et e et e e b e et e e rb e raesreesaeenbeenbeeraeeseenteenseans 18

Tokenization of COMMANAS..........cceeriiiiiieiiieieie e 18
(1) SPECIAl CHATACTETSeeieeieiieiieeie ettt ettt et et et e et e esaeseaesseesseenseensesnnesseenseensennsenns 18
(2) ParCNERESES ...eiviieeiie ettt e e et e e e e et e e e beeeabeesraeenbeeebaeenbeesabaeenreann 19
(3) INFIX OPCIALOLS ..eueieeieiietietiete ettt ettt et et e e e et e et e et e es e sseesse e eeeneeeneesmeesseenseenseenneans 19
(4) TOMPIALES ..ottt ettt ettt ettt et e bt e et e et e et e et e et enteeneeeneeeneenteens 19

Chapter 3 Primitivesccccecveiccvcnnicsssnnncsssnnicssneecssssecsssssesssnsssssnssesses 20

NUMETICAl OPETALIONSveeeeviieiiieeeiieeeieeeeiee et e eateeeteeeeteeesteeesaeeesssaeensseeesssaeensees 20
(1) ATTtHMETIC OPEIATOIS....vieevieiieitieiieieeteeteeeeesttesteeseesseessesseesseeseessesssesseesseesseessenssesssessesssenns 20
(2) Arithmetic fUNCHONSccuviriietieieeieste sttt et e et e et e ste et e e b e esbeseeessaesseesseessessnesseesseessenssenns 20
(3) ROUNAING ...ttt ettt et et st e st e b et e ensesnaesnaesseeseenseenseessenseenseans 22

Lhogho: The Real Logo Compiler User Documentation

(4) Exponential and logarithmic fUnCiONS..........ccecieviieiieienierieie et sre e e 22
(5) Trigonometric fUNCIONSccveeieeieeieiierteeste et eteeetesteeteesbeesseseseseaesseeseessesssesseesseesensseans 24
(6) RANAOM NUIMDETS......ccuiiiiiiieiieieetesie sttt ettt et et e et esteenteessessaessaesseesseenseansesssesseenseenseans 25
(7)) SEQUEINCES ...ttt ettt ettt sttt et ettt bt bt s bt bt et e bt st besbeebe e e eneen 26
(8) Operations With DItS.......ccueiieiieiieiee ettt et e st ens 26
Predicates and Boolean Operationscceeveereeriieniieniiieniie e 27
(1) COMPALE PIEAICALESvveeuereerieeiieeitieeieeeiteerteeeteeeteeeteeeteeesteeeseeesseeansaeenseeanseeenseesnseesnseenn 27
(2) TYPE PIEAICALES. ... neeueeneeiete ettt ettt ettt ettt et ettt e st e b e e st eae e st e e eneeseeatesaeeneeneensensensenean 30
(3) INCIUSION PIEAICALESveevveeieiieiieieeie e ette st et et e e et e steebeesbeessessseseeesseenseessesssesssensaensenns 31
(4) LOZICAL fUNCLIONSevieuienieiestieterie ettt ettt ettt ettt b e sb e bt ene e eneas 32
Word and liSt OPETAtIONScecviereieeiieeieeieeeie et eeiee ettt e ebeesaeeebeesseeeeseeseessseenns 32
(1) SELECLOTS ...eeieeiete et ettt et e te st e st e st e et et e et e ese e st e et e enseensesssessaesseenseensesnsesneenseanseenseans 32
(2) CONSIIUCTOTS ...uvieieeeeieiietieieeteetesetesseesseeseeseetesseesseanseanseensaessesssessaeseenseensesnsesssesseanseensenns 36
(0 T & 153 0] 4101 PO SUUSTUUSURP 38
(4) FOIMATING ..ottt ettt ettt ettt e et e bt et et esseessee et enteeneeeneesneesseenseenneans 39
CONIOL SEIUCTUIES....evvieeiiie et eeite et ettt e et eeteeetaeestaeeetaeessseeesnseeensseeennseens 40
(1) Conditional EXECULION.......cceeivieiieiieieieieiteeste ettt e et esteebeesbeeeeeseeesreesseesseessessnesseeseessenns 40
(2) LOODS e ettetieiieie ettt et ettt et e et e s e s te et e e b e et e e reeett e bt e st e enbeesbeetaeesa e sa e beenbeenteeraeereenseenseans 42
(3) EXECULION.....uiiiiiiiieeiieiieetteteet et et e st et e eaeeaesteesaeesteesseesseesaesssessaessaessesssesssesseenseenseensenns 44
(4) EXItS @Nd tAGS ...eevvieiieiieieeiesieseete ettt sttt ettt ettt ettt e et e b e sae st e aeeseenteenneensenseeseans 46
(5) MISCAIlANE@OUSeeiieiieiiieie ettt ettt te st e st e sttt et e enteesaesse e seesseensesnsesanesseenseensennseans 48
Files and fOlATS........couiiiiiiiieieee et 48
[T 0] U (< USRS 49
(2) FHIES sttt ettt ettt ettt ettt b bbbt te b st te b st ebe b e st te s eneete b enens 50
(3) Opening and cloSING fIlESeeueiieiiiiieie ettt 51
(4) AccesSING {118 CONENTScuieiiiiiiiiiie ettt et st e b e b et eae 53
(5) TeXt INPUL/OULPUL ..eouvieiieeiieieciie ettt ettt et e et e steesteesbeesbessaessaesseesseessesssesssesseesseessenssesssessanns 55
(6) BiNary INPU/OULPUL.......ccieriietieieeteete sttt et eteeete et e steesteebeessesssessaesseesseesseessesssesssessaessenns 57
VATIADIES ...ttt e ettt aae e beeenaeenne 59
AdVanCed PIIMILIVESccuvieriieriieiieeieeite ettt e ete et e te et eesaeebeesaaeebeessaeenbeesaaeenne 63
(1) Lhogho System Variablesccoeoeroieiieiieriest ettt sttt ee e nae e ens 63
(2) Run-time functions and COMMANGSc.ceeecuieiirieeiiieiiieeieerte e esreesreesaeesaeesereeseseeseees 65
() T 27 41 ¢TSRS 66
(4) Error handlingcoooiiiiieie ettt 67
(5) OS-related fUNCHONSc.viiieitieiieie ettt ettt et e eb e b e eeeeseaesreesaeesseesnesrnesseeseesseens 69
LOW-1EVE] ACCESS....uiiiiiiiiiiie ettt aee e e e enseeeans 71
(1) NALIVE dALA LYPES veerieeiieeiieiieiieiieie et eteste st e st esbeeebeeteesseebeessesssesssessaesseesseessesssesssessessenns 71
62 T = 700 o)< TP UTUSPSRT 72
(3) Shared LIDIATIS. ... eccveeiieieeieeiieeiteie et eteete st et et et eeeae st aesseesseensesnsesaeesseenseenseenseensenseeseans 74
(4) SYSLEIM STACKeetieiieie ettt ettt ettt et s e st e et e et e te et e s e eneeaeens 77

Chapter 4 Libraries and Applications........ccccceeeccnrccscnnrcsscnnrccscnneeeees 80
LIADTATIES ettt et ettt ettt et 80

Lhogho: The Real Logo Compiler User Documentation

(1) TG A ettt ettt ettt st ettt st et se st e st b et e st e bbbt et ene st s e 80
(2) GL, GLU aNd GLUT ..ottt sttt sttt ettt be e ns 81
[T 2101 1< USSP 84
APPIICATIONS ...ttt ettt ettt ettt e st e et essteesbeeesbeenbeessaeenseennaeenne 94
(1) HEILO WOTIA ..ottt et ettt e e be e et e esaeenbeeensaeenseeensaeenseean 94
(2) SEMPLE CLI..uitiiieiiiieiieiecietetei ettt ettt ettt ettt et et teeb et sesbessesesbeseesesseseesessenseseseneans 94
(3) Prime NUIMDEIS. ...c.viiiiieeiieeiie et eite et etee et e et esteeeteesbeessteessbeessseesssaeasseesnseessseessseensseean 95
(B) CalCUIALOT ...ttt ettt ettt ettt e eeebeete e te e beesbeesaeeraesreesseenbeenseessesrsenreans 96
(5) SQUATE ROOL.....uiiiieiiieiiieiieeiteteete ettt ettt et e et e ste et e esbaesbesssessaesseesseensesssesssesseenseensenns 96
(6) CUDE3D ...ttt ettt ettt et ae ettt b et a e be st te e ene b s ens 97
(7)) MANACIDIOLcuviiiiieiiiciieetieeete ettt ettt et e e e te et e e b e esbeesbessaessaesseenseessesssesssenseensenns 97

Chapter S APPENICESuueeriersrvnrricssssnenncssssnssnccsssnssnscssssssssscsssssssess 101

FOImat STIINES ..o.eveeiieiiieiie ettt sttt eaeeas 101
(1) Format strings fOr MUMDETScceiiiiiiiii ettt 101
(2) Format strings fOr dateccueiiiiiiiieie et 101
(3) Format strings fOr tMeooieiiieriiiieiie ettt 102

INAEX OFf PIIMITIVES ..cceviieiiieeeiie ettt ettt e e e e ser e e e v e e enreeenaeeennes 102

Lhogho: The Real Logo Compiler User Documentation

Lhogho: The Real Logo Compiler User Documentation

Chapter 1 Introduction

General information

(1) About Lhogho

Lhogho is a compiler for the Logo language(s). It supports Logo programs with tradi-
tional number/word/list processing, turtle graphics, 3D graphics, OOP, parallel proc-
esses, etc. Well, it will support all this things when we finish it. Hopefully!

Why is it called Lhogho? One of the main goals was to find a name which sounded
like Logo, but to be written in a way which no one else has seen before. We did test
Lhogho with the major search machines (back in 2005) and we got 0 hits. Unfortu-
nately we do nt know how to pronounce the name. Honestly. We asked several native
English speakers, but they ricocheted back to us the same question. So far we pro-
nounce it the same way as Logo, but with a slight double-wink. If you have any sug-
gestions about pronunciation let us know.

Lhogho is developed by a team at Department of Mathematics and Informatics at
Sofia University. The team leader is Lhoghoman (Pavel Boytchev, Assoc. Prof., PhD).
As an open source project we expect that other professional would join us too.

(2) License

Lhogho is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License along with this
program - see file LICENSE . TXT; if not, write to:

Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301,

USA

Lhogho: The Real Logo Compiler User Documentation

Quick start

(1) Getting Lhogho

Lhogho web site provides links to prebuilt Lhogho binaries. These are Lhogho distri-
butions ready to start without any compilation. The catch is that binaries are platform
and processor specific and we cannot provide binaries for all systems in the world.
However, we have built these binaries:

e Lhogho for Linux on 1386 processor (Ihogho.0.0.000.Linux.tar.gz)
e Lhogho for Windows (Ihogho.0.0.000.Windows.tar.gz)
where 0.0.000 is the actual release number.

Binary packages for Linux are distributed in tarred gzipped form. To install the binary
execute the following commands using the actual release number:

gzip -d lhogho.0.0.000.Linux.tar.gz

tar -xf lhogho.0.0.000.Linux. tar

Binary packages for Windows can be unzipped from Windows Explorer using the

built-in unzip utility.

(2) Using Lhogho
If you run Lhogho in a console window without providing any inputs, it will shows its
version, platform and language:

lhogho

LHOGHO - The LOGO Compiler [ver, os-proc(lang), date]

where ver is the full version of the compiler, os is the operating system (Windows or
Linux), proc is the processor (e.g. 1386), and date is the date of compilation.

Lhogho comes with several sample programs. Let’s try to run hello.lgo from
command prompt':

lhogho hello.lgo

Hello World

The second line above is the result of the program. It just printed the text “Hello
World’.

Now let’s use primes. Igo to print all prime numbers up to 60:

" For Linux configurations you may need to add ./ before the command, i.e. ./lhogho instead of
Ihogho

Lhogho: The Real Logo Compiler User Documentation

lhogho primes.lgo 60
2 357 11 13 17 19 23 29 31 37 41 43 47 53 59

And now up to 1000:

lhogho primes.lgo 1000

2357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157
163 167 173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
337 347 349 353 359 367 373 379 383 389 397 401 409 419 421
431 433 439 443 449 457 461 463 467 479 487 491 499 503 509
521 523 541 547 557 563 569 571 577 587 593 599 601 607 613
617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
719 727 733 739 743 751 757 761 769 773 787 797 809 811 821
823 827 829 839 853 857 859 863 877 881 883 887 907 911 919
929 937 941 947 953 967 971 977 983 991 997

Because Lhogho is a compiler, it can build standalone executable files which can be
run without installing Lhogho. To compile and test primes. Igo use these com-
mands:

lhogho -x primes.lgo

primes 60

2 357 11 13 17 19 23 29 31 37 41 43 47 53 59

In Windows environment the name of the produced executable file is primes.exe,
while in Linux environment is it primes. Lhogho will remove the file name exten-
sion of the source file if it is . Igo, . log, . 1g, . logo, . 1ho or . lhogho. If the ex-
tension is another one, then Lhogho will add -exe (in Windows) or . run (in Linux)
in the name of the compiled program.

Executable files produced by the Lhogho could be fully-functional Lhogho compilers
too. Let's compile hello.1go into a hello compiler and then use it to recompile

primes.lgo:

lhogho -xc hello.lgo

hello -x primes.lgo

primes 60

Hello world

2357 11 13 17 19 23 29 31 37 41 43 47 53 59

Note that hello is already an executable file that contains a Lhogho compiler. It
makes all compiled program to print “Hello World” at the beginning. This is like a
custom-made Lhogho compiler.

Lhogho: The Real Logo Compiler User Documentation

(3) Non-English Lhogho

The Lhogho executable file is distributed in two versions — an English Lhogho and a
German Lhogho. There is also a default executable file Thogho.exe (or Ihogho in

Linux), which is equivalent to the English version.

The following table summarizes which parts of Lhogho are translated into which lan-

guages:
Component English German
Lhogho Lhogho
Primitives in English | most in German
Error messages in English | in German
Compiler options in English | in German
Compiler help in English | in German
Source examples in English | in English
Libraries in English | in English
User documentation | in English | in English

Lhogho outputs text as UTF-8. This is encoding which allows support for characters
outside the range of the traditional Latin alphabet. When a non-English version of
Lhogho is used in a console window, the text output may not look correct of the con-
sole does not support UTF-8.

A Windows XP/7 console can be switched in UTF-8 mode by chcp.com (Change
codepage) command:

chcp.com 65001
Active code page: 65001

Also, in Windows XP/7 the console window should use a TrueType font. The default

raster font can render only the basic Latin characters.

Scripting

Lhogho can be used as a scripting engine. The following sections describe various
scenarios. Scripting for Windows and Linux is done in two conceptually different, but
compatible ways. Thus, it is possible to make a source file executable directly from
the command prompts of both Windows and Linux.

Lhogho: The Real Logo Compiler User Documentation

(1) Windows console

Lhogho can be defined as a default application for running . Igo files. The following
two commands executed from the Windows command prompt associates - 1go files

with Thogho .exe (path is the full path to the folder containing the executable):

assoc .lgo=LhoghoScript

-Igo=LhoghoScript

ftype LhoghoScript=C:\path\lhogho.exe "%1" %*
LhoghoScript=C:\path \lhogho.exe "%1" %*

Once the association is done, Lhogho source files can be executed “immediately”:

hello.1lgo
Hello world

(2) Linux console

If the first line of source code is a shell comment pointing to the compiler, then the
source file can be executed “immediately”. Consider a source file hello. Igo with

the following contents (path is the full path to the folder containing the executable):
#1 /c/Pavel/Logo/1hogho/src/core/lhogho
print [Hello world]

In Linux it can be executed in this way:

$ hello.lgo
Hello world

Compiling the compiler

If none of the prebuilt binaries work on your system try to recompile Lhogho and
generate binaries. To do this first download the latest source package — it is platform
independent and is called IThogho.-0.0.000.src.tar.gz where 0.0.000 stands
for the release number.

Unpack the distributable and consult the INSTALL.TXT file which contains informa-

tion how to recompile Lhogho, its documentation and how to create new distributable.

Additional information

Information about Lhogho as well as various resources can be accessed from its home
page http://1hogho.sourceforge.net. Developers may consider visiting the
Lhogho Portal at http://sourceforge.net/projects/Ihogho.

10

http://lhogho.sourceforge.net/
http://sourceforge.net/projects/lhogho

Lhogho: The Real Logo Compiler User Documentation

Chapter 2 Syntax and Tokenization

Logo syntax

The source programs that Lhogho understands are ASCII or UNICODE text files that
contain Logo instructions. The source text consists of tokens, which are specialized
units of texts, like words and punctuation marks in sentences.

(1) Overview

The syntax of Logo programs is fairly simple. Usually tokens, that describe instruc-
tions, are separated by spaces, but some special punctuation tokens can be written
next to each other. A typical syntax of a Logo instruction is:

command param; param, params ..

where command is a token, and param; are expressions made of tokens. Expressions

have the same structure as instructions:

operation param; param, params ..

(2) Data types

Lhogho supports two Logo data types: words and lists.

"word EN, DE

Words are used to represent texts. For a token to be evaluated as a word, it must be
start with double quotes. If a word is in a list of data, the double quotes are not neces-

sary.

3.14 EN, DE
"3.14

Numbers are special kind of words which are self-evaluatable, i.e. it is not necessary
to use double quotes.

"true EN
"false

"wahr DE
"falsch

Finally, words are used to denote Boolean values, which are results of predicate func-

tions (like equal?), or are used in conditional statements (like 1F).

-11-

Lhogho: The Real Logo Compiler User Documentation

(3) Parentheses

Logo is descendent of the programming language LIST and thus the parentheses play
significant role in Logo programs. When parentheses are used, the opening parenthe-
sis is placed before the first token of an instruction or an expression, and the closing

parentheses — after the last token.

(command param; param, paramsz ..)
This rule also applies to infix operations (i.e. operation with an input before the name
of the operation):

(param; operation param,)
Parentheses can be used for several reasons. One of them is to make source code
clearer by visually grouping tokens that form a parameter. Except for beautification,

this use of parentheses provides hints for the scope of each expression. The parenthe-

ses in the next example are not necessary:

print item (count :n) (word 'abc :n)
Another purpose of parentheses is to change the order of calculations. If they are not
used, an expression may still be syntactically valid, but will produce another result.

The next expressions will produce the values (a+5)(b-10) and sin(30)+10. Without
parentheses, the values will be a+5b-10 and sin(30+10).

(za+5)*(:-b-10)

(sin 30)+10
Finally, parentheses are used to force execution of instructions and calculation of ex-
pressions that have number of inputs different from the default one. The next example

shows the function word which is forced to process four inputs. Without parentheses,

word will process only two inputs.

(word "a "b 'c :n)

(4) Programming entities

A typical feature of Logo is that data and program are expressed in the same way — by
sequences of tokens. Depending on the context, Lhogho decides how to process any
particular token or a group of tokens.

Text literals are tokens which first character is double quotes . Such tokens are con-
sidered by Lhogho as text literals (the double quotes are excluded from the literal).

"sample

To define a token with special characters or punctuation see section Tokenization of
data.

12

Lhogho: The Real Logo Compiler User Documentation

If the first character of a token is colon :, then the rest of the token is considered as a
name of a variable and Lhogho extracts its value The next one-token expression re-

turns the value of variable called “sample”:
:sample
In other cases, if the token is not punctuation, then it is considered as name of a com-

mand to execute or operation to evaluate.

Logo can group tokens in larger structures called lists. The list is a sequence of tokens
or other lists framed in square brackets. Semantically, a list can represent a sequence

of words as well as a sequence of instructions.

[list of tokens]

(5) User commands and operations

The tokens to and end are used to define a new command or operation. The syntax of
such definitions starts with a header line describing the name of the command and the
names of the formal inputs. In the next example the name of the command is sample

and there are two inputs called param and state:

to sample :paraml :param2 EN
end
pr sample :paraml :param2 DE
ende

The instructions that represent the essence of the command are placed following the

header line. The end of the definition is the token end.

The token learn is a synonym of to and can be used together with end:

learn sample :paraml :param2 EN
end
lerne sample :paraml :param2 DE
ende

(6) Variable number of inputs

Lhogho allows the definition of local commands and operations. In the following ex-
ample function Fib is local to function Fibonacci and is only accessible within its

scope:

-13-

Lhogho: The Real Logo Compiler User Documentation

to fibonacci :@x
to Tib :x
if :x<2 Joutput :x] [output (Ffib :x-1)+(Fib :x-2)]
end
iT :x<0 [(throw "error [Invalid input to fibonacci])]
output fib :x
end

print fibonacci 10
print fibonacci -4

Lhogho allows the definition of commands and operations with undefined number of
inputs. Typically, Lhogho will generate an error message if a command in used with

more or less inputs that the defined one. If the list of formal inputs ends with “. . .
then it is possible to provide more or less actual inputs:

to average :a ...
local "'sum
make "‘sum O
repeat inputs [make "'sum :sum+input repcount]
output :sum/inputs
end

print (average 1 2 3 4 5)

print (average -1 1 3 5)
Note: For exemplary definitions of functions input and inputs see the documenta-
tion of stackframe and stackframeatom.

(7) Prefix, infix and postfix notations

The order of formal inputs of a user-defined command or operation determines
whether it is prefix, infix or postfix. The following example defines a prefix operation

n
for square cube Ux , infix operation for binomial coefficients (kj , and postfix opera-

tion for factorial n!:

to sqrt3 :-x
output power :x 1/3
end
to :n over :k
output (:n D/(Ck D/(:n-:k 1)
end

14

Lhogho: The Real Logo Compiler User Documentation

to :n !
iT :n<2 [output 1] [output :n*(:n-1 1)]
end

print sqrt3 27
print 5 over 3
print 5 !

Tokenization of data

Tokenization is the process of splitting Logo source code into tokens. Generally Logo
tokenizes sequences of characters in two different ways — data and command tokeni-
zation, depending whether the input is expected to contain data or commands. These

two tokenizations occur implicitly - i.e. the Logo implies them automatically.

Tokenization of data is the process of splitting text containing data into tokens. It is
weaker than the command tokenization, because 2+3 is considered as one word in

data sequences, and three words in command sequences.

Characters can be classified into three categories: special, ordinary and whitespaces.
Special characters are those which have special meaning and treatment. Whitespaces

are the invisible characters like spaces and tabs. All other characters are ordinary.
The general rules for data tokenization are:

e Whitespaces are delimiters of words.

e New Line character is a delimiter of lines.

e Brackets [and] are tokens by themselves.

Spaces and tabs are the most common token delimiters. Two or more of them in a row
are considered as a single delimiter.
print [Spaces and Tabs]

Spaces and Tabs

Newline characters are also considered as whitespaces in data tokenization (this is not

true for command tokenization).

Square brackets [and] are considered as single-character tokens. They are essential
part of the Logo syntax for representing lists.

print [List [of [] words]]

List [of [] words]

The fragment in the brackets [] is created as a sublist. Thus the tokens of square
brackets do not appear as elements of the list.

-15-

Lhogho: The Real Logo Compiler User Documentation

(1) Comments

Comments are fragments of the program which are ignored. Lhogho provides two

forms of comments: line and shell comments.

Lhogho uses a semicolon ; to comment the text till the end of the line excluding the
new line character. These are called line comments. Some special characters in a
comment loose their properties. For example brackets [] and bars | ... | are treated
as a part of the comment.

print "Hello ;world
Hello

Backslash \ and tilde ~ characters keep their specialty in line comments.

print "Hello ;world\
print "again
Hello

Shell comments are lines starting with #! in a Logo program which are intended to be
processed by the command shell of the operating system. Lhogho treats these lines as
comments.

#! /usr/local/bin/logo
(print "Shell "comment)

Shell comment

Not all operating systems recognize shell comments, e.g. #! does not work under MS
DOS and Windows.

(2) Line continuation

A line can be continued onto the next line if its last visible character is tilde ~. This is

often used when a line too long.

Placed at the end of a line a tilde ~ makes it continue into the next line. Whitespaces
after the tilde are ignored. If there are other characters between the tilde and the new
line, then the tilde it is treated as ordinary character and the whitespaces after it (if
any) are not ignored:

print "Long~
word

Longword

A line with a line comment can still be continued with a tilde ~:

print "Really; Yes!~
long; comment ~

word

16

Lhogho: The Real Logo Compiler User Documentation

Real lylongword

(3) Backslashes

In many cases it is needed to include characters in a word which are otherwise treated
as special. Lhogho does this with bars |...] and backslashes \.

To include an otherwise delimiting character (including semicolon or tilde) in a word,

precede it with backslash \. To include a backslash in a word, use \\.

Backslashes turn other characters into ordinary ones - spaces, square brackets, bars,
semicolons, tildes and other backslashes.

print "Back\\slashed\ word
Back\slashed word

print "Bracket\ [word
Bracket|[word

If the last character of a line is a backslash, then the newline character following the
backslash will be part of the last word on the line, and the line continues onto the fol-
lowing line.

print "Two-line\

word

Two-11ne

word

If the new line character at the end of a comment is backslashed, then it becomes a
part of the comment together with the next line.

print "one;comment)\
print "two

one

print "three

three

If a tilde is backslashed in a comment it becomes a part of the comment, and the new
line character is not ignored.

print "one;comment\~
one

print "two

two

print "three

three

-17-

Lhogho: The Real Logo Compiler User Documentation

(4) Bars

Bars are used when whitespaces or new lines must be included in a word. Inside bars
all special characters except the backslash become ordinary characters. To include a
bar inside bars use \|.

When bars are next to a word, their contents is a part of the word too. The bars them-
selves are not a part of the tokenized word.

print "|bars and spaces|
bars and spaces

print "bar|s and

new lines|

bars and

new lines

All special characters except backslash \ become ordinary when placed in bars. For
example, comments and line continuations are not available inside bars as shown in
the next case:

print |bar;red~
comment |
bar;red~
comment

The only way to include a bar inside bars is to backslash it.

print [|bars in |..| bars]|]
bars In .. bars

print [|bars in \|..\| bars]|]
bars in |..] bars

Tokenization of commands

Tokenization of commands is the process of splitting text containing Logo commands
into tokens. This tokenization is differs from tokenization of data because it has addi-
tional rules:

e Parentheses are delimiters.

e Mathematical operators are partial delimiters.

(1) Special characters

Special characters like ** and : are not delimiters. For example words containing them
are parsed together with them. Lhogho processes " and : later on, during compilation.
Words after " are delimited by [, 1, (,) or whitespace.

18

Lhogho: The Real Logo Compiler User Documentation

print "1+42
1+2

Words not after ** are delimited by [, 1, (,), whitespace or any of the infix operators
+, -, %/, =, <, >, <=, >= <> Words starting with : fall into this category.

print 142
3

(2) Parentheses

Parentheses are delimiters. They are processed as single-character tokens, but they do
not appear in the resulting abstract tree. To include a parenthesis in a word use back-
slash \.

print "\ (abc\)
(abc)

(3) Infix operators

Each infix operator character is a token in itself, except that the two-character se-

quences <=, >= and <> with no intervening space are recognized as a single token.

Note: Tokenization of infix operators depends on the special character *'.

(4) Templates
A non-backslashed question mark followed by a number is tokenized into a sequence
of four tokens.

print runparse [1+?37]
1+ (?37)

print runparse [1+\?37]
1+ 2?37

-19-

Lhogho: The Real Logo Compiler User Documentation

Chapter 3 Primitives

Numerical operations

Numerical operations are functions and operators which process numbers (either inte-
ger or floating-point). Integer numbers can be represented in decimal radix and in
hexadecimal radix (with the prefix 0x, e.g. OxFF).

(1) Arithmetic operators

value + value
+ value

value - value
- value

value * value
value / value

Arithmetic operators are used to add, subtract, multiply or divide numbers. They cor-
respond to the basic mathematical operators +, —, * and /. The + and — operators can

be binary or unary, while * and / are only binary.

print (1+3)%*(7-4)
12

print (1+3)/(5-3)
2

Division can easily produce large numbers especially if the second input is cloze to

zero or is zero. When a number becomes too big it is reported as being infinity (INF).

print -3/0
-inf

print 5/inf
0

(2) Arithmetic functions

sum :value :value EN
(sum :value :value :value ..)

summe :value :value DE
(summe :value :value :value ..)

Function. Outputs the sum of its inputs. Can be called with arbitrary count of argu-

ments.

20

Lhogho: The Real Logo Compiler

print (sum 1 2 3)
6

difference :value :value
differenz :value :value

Function. Outputs the difference of its inputs.

print difference 1 2
-1
minus :value
Function. Outputs the negative of its input.

print minus 3
-3
print minus -4

4

product :value :value

(product :value :value :value ..

produkt :value :value

(produkt :value :value :value ..

)

User Documentation

EN
DE

EN, DE

EN

DE

Function. Outputs the product of its inputs. Can be called with arbitrary count of ar-

guments.

print product 4 5

20
print (product 1 2 3)

6
quotient :value :value
Function. Outputs the quotient of its inputs.

print quotient (1+3) (5-3)
2

EN, DE

Division can easily produce large numbers especially if the second input is close to

zero or is zero. When a number becomes too big it is reported as being infinity (INF).

print quotient 3 0
inf
print quotient -3 0
-inf

21-

Lhogho: The Real Logo Compiler User Documentation

remainder :value :value EN

rest :value :value DE

Function. Outputs the remainder on dividing its arguments. Both must be integers and
the result is an integer with the same sign as first one.

print remainder 2 3

2
print remainder 5 -2
1
print remainder -5 2
-1

(3) Rounding
int :value EN, DE

Function. Outputs its input with fractional part removed, i.e. an integer with the same
sign as the input, whose absolute value is the largest integer less than or equal to the
absolute value of the input.

print int 5.5

5

print int -5.3

-5
round :value EN
runde :value DE

Function. Outputs the nearest integer to the input.

print round 5.3
5
print round 5.5
6
print round -5.5
-6

(4) Exponential and logarithmic functions

sqrt :value EN
qw :value DE

Function. Outputs the square root of the input, which must be nonnegative.

print sqrt 4
2

22

Lhogho: The Real Logo Compiler User Documentation

print sqrt 5

2.236068
power :value :value EN
potenz :value :value DE

Function. Outputs its first argument to the power of second argument. If first is nega-
tive, then second must be an integer.

print power 2 2

4

print power 4 0.5
2

exp :value EN, DE
Function. Outputs e=2.718281828... to the input power.

print exp 1
2.718282
print exp -1
0.367879

logl0 :value EN, DE
Function. Outputs the common logarithm of the input.

print loglO 100

2

print loglO 12345
4.091491

ln :value EN, DE
Function. Outputs the natural logarithm of the input.

print 1n 10
2.302585

abs :value EN, DE
Function. Outputs the absolute value of the input.

print abs 5
5
print abs -5
5

-23-

Lhogho: The Real Logo Compiler User Documentation

(5) Trigonometric functions

pi EN, DE

Function. Outputs the number 7.

print pi

3.141593
sin :value EN, DE
cos :value EN, DE

Functions. Output the sine or the cosine of their inputs, which are taken in degrees.

print sin 45

0.707107

print cos 10

0.984808
radsin :value EN, DE
radcos :value EN, DE

Functions. Output the sine or the cosine of there inputs, which are taken in radians.
print radsin (pi/4)
0.707107
print radcos (-pi/2)
0
arctan :value EN, DE
(arctan :value :value)
Function. Outputs the arctangent, in degrees, of its input. If there are two inputs out-
puts the arctangent in degrees of y/x, where X is first argument of function, and y is
second.

print arctan sqrt 2

54 _.73561
print (arctan 1 1)
45
radarctan :value EN, DE

(radarctan :value :value)

Function. Outputs the arctangent, in radians, of its input. If there are two inputs out-
puts the arctangent in radians of y/x, where x is first argument of function, and y is

second.

print radarctan sqrt 2
0.955317

print (radarctan 1 1)

24

Lhogho: The Real Logo Compiler User Documentation

0.785398

(6) Random numbers

random :max EN
random :list
(random :min :max)

zZz :max DE
zz :list

(zz :min :max)

Function. If called with one argument and argument is a number then outputs a ran-

dom number between 0 and max.

If called with one argument list, outputs a randomly selected element of the list. This
functionality is available only when Lhogho is in extended, non-traditional mode.

If called with two arguments, outputs an integer number between min and max inclu-

sive. Value min must be nonnegative and less or equal to max.

print random 4
0
print random [1 2 3]
3
print (random 4 6)
5
rerandom EN
(rerandom :num)
sz DE
(sz :num)
Command. Makes the results of random reproducible. Usually the sequence of ran-

dom numbers is different each time Lhogho is started, unless rerandom is used.

If called with no arguments, sets same sequence each time. If you need the more than
one sequence of pseudo-random numbers repeatedly, you can give rerandom an in-

teger input which selects a unique sequence of pseudo-random numbers.

rerandom

(print random 4 random 4 random 4)
203

rerandom

(print random 4 random 4 random 4)
203

-25-

Lhogho: The Real Logo Compiler User Documentation

(7) Sequences

Functions for generating sequences return a list of numbers within a given range.
These functions could be entirely written in Lhogho, but are also defined as primitives
for higher performance.

iseq :from :to EN, DE
Function. Outputs a list of the integers between from and to, inclusive.

print iseq 5 10
56789 10

rseq :from :to :count EN
lseq :from :to :count DE

Function. Outputs a list of count equally spaced rational numbers between from and

to, inclusive.

print rseq 5 3 5
5454 3.53

(8) Operations with bits

lshift :number :bits EN, DE

Function. Outputs number logical-shifted to the left by bits bits. If bits is negative,
the shift is to the right with zero fill. Both inputs must be integers.

print 1lshift 1 2

4
print 1lshift 16 -2
5
ashift :number :bits EN, DE

Function. Outputs number arithmetic-shifted to the left by bits bits. If bits is nega-
tive, the shift is to the right with sign extension. Both inputs must be integers.

print ashift 1 2

4

print ashift -16 -2

-4
bitand :value :value EN
(bitand :value :value :value ..)
bitund :value :value DE
(bitund :value :value :value ..)

Function. Outputs the bitwise and of its inputs, which must be integers.

print bitand 7 12

26

Lhogho: The Real Logo Compiler User Documentation

4

bitor :value :value EN
(bitor :value :value :value ..)

bitoder :value :value DE
(bitoder :value :value :value ..)

Function. Outputs the bitwise or of its inputs, which must be integers.

print bitor 7
15
bitxor :value
(bitxor :value

bitxoder :valu
(bitxor :value

12

:value EN
:value :value ..)

e :value DE
:value :value ..)

Function. Outputs the bitwise exclusive or of its inputs, which must be integers.

print bitxor
11

bitnot :value
bitnicht :value

7 12

EN
DE

Function. Outputs the bitwise not of its input, which must be integer.

print bitnot 3

-4

Predicates and Bo

olean operations

(1) Compare predicates

Predicates are functions and operators which are used to test if their input parameters

has specific properties

result.

:value = :value

equalp :value
equal? :value

gleichp :value
gleich? :value

Operator and function

or are in specific relations. Predicates return Boolean values as

EN, DE
:value EN
:value
:value DE
:value

. Outputs true if the inputs are equal, False otherwise. Two

numbers are equal if they have the same numeric value. Two non-numeric words are

equal if they contain

named caseignored

the same characters in the same order. If there is a variable

p whose value is true, then an upper case letter is considered

the same as the corresponding lower case letter which is the case by default. Two lists

are equal if their members are equal.

27-

Lhogho: The Real Logo Compiler User Documentation

print 5 = "5
true

print equal? "One "two

false
:value <> :value EN, DE
notequalp :value :value EN

notequal? :value :value
ungleichp :value :value DE
ungleich? :value :value

Operator and function. Outputs False if the inputs are equal, true otherwise.

print 5 <> "5
false

print notequal? "One "two

true
:value < :value EN, DE
lessp :value :value EN

less? :value :value

kleinerp :value :value DE
kleiner? :value :value

Operator and function. Outputs true if its first input is strictly less than its second.

Inputs must be numbers.

print 5 < 10
true
print less? 5 5

false
:value > :value EN, DE
greaterp :value :value EN

greater? :value :value
groBerp :value :value DE
gréBer? :value :value
Operator and function. Outputs true if its first input is strictly greater than its second.

Inputs must be numbers.

print 15 > 10
true
print greater? 5 5

false

28

Lhogho: The Real Logo Compiler User Documentation

:value <= :value EN, DE

lessequalp :value :value EN
lessequal? :value :value

kleinergleichp :value :value DE
kleinergleich? :value :value
Operator and function. Outputs true if its first input is less than or equal to its second.
Inputs must be numbers.

print 5 <= 10
true
print lessequal? 5 5

true
:value >= :value EN, DE
greaterequalp :value :value EN

greaterequal? :value :value
groBergleichp :value :value DE
groBergleich? :value :value
Operator and function. Outputs true if its first input is greater than or equal to its
second. Inputs must be numbers.
print 5 >= 10
false
print greaterequal? 5 5
true
beforep :value :value EN
before? :value :value
vorherp :value :value DE
vorher? :value :value
Function. Outputs true if first argument comes before second in ASCII collating se-

quence. Case-sensitivity is determined by the value of caseignoredp.

Note: if the inputs are numbers, the result may not be the same as with less?.

print beforep 3 12
false
print before? "one "two

true

-20-

Lhogho: The Real Logo Compiler User Documentation

(2) Type predicates

wordp :value EN
word? :value

wortp :value DE
wort? :value

Function. Outputs true if the input is a word, false otherwise.

print wordp "123

true

print word? [123]

false
listp :value EN
list? :value
listep :value DE
liste? :value

Function. Outputs true if the input is a list, Fal se otherwise.

print listp "123

false

print list? 123

true
numberp :value EN
number? :value
zahlp :value DE
zahl? :value
Function. Outputs true if the input is a number, false otherwise.

print numberp 123

true

print number? [123]

false
emptyp :value EN
empty? :value
leerp :value DE
leery? :value
Function. Outputs true if the input is the empty list or the empty word, false oth-

erwise.
print emptyp "123
false
print empty? [123]
true

30

Lhogho: The Real Logo Compiler User Documentation

backslashedp :char EN
backslashed? :char
backslashp :char DE

backslash? :char

Function. Outputs true only if the input is a character which has been backslashed or
barred. Characters which do not need to be backslashed or barred are always reported
as non-backslashed even if they were actually backslashed. The backslashable charac-
ters are: +, -, *, /,=,<,>,(,), | and? .

print backslashed? item 4 "123-456\-789

false

print backslashed? item 8 "123-456\-789

true

(3) Inclusion predicates

memberp :elem :value EN
member? :elem :value

elementp :elem :value DE
element? :elem :value

elp :elem :value

el? :elem :value

Function. If value is a list, outputs true if elem is equal? to any member of
value, false otherwise. If value is a word, outputs true if elem is a one-

character word equal? to a character of value, False otherwise.

print member? 345 [123 345 567]
true

print memberp "a 123

false

substringp :textl :text2 EN, DE
substring? :textl :text2

Function. Outputs true if textl is a substring of text2. If inputs are not words
outputs false.

print substringp 123 456123456
true

31-

Lhogho: The Real Logo Compiler

(4) Logical functions

and :value :value
(and :value :value

all? :value :value
(all? :value :value :value ..

und :value :value

(und :value :value :value ..

alle? :value :value
:value

(alle? :value

Function. Outputs true if all the inputs are true, false otherwise.

print and 1 < 2 3

true

:value ..

:value ..

3

print (and 1 < 2 3 <> 4 5

true

or :value :value
(or :value :value :value ..

any? :value
(any? :value

oder :value
(oder :value

:value
:value

:value
:value

:value ..

:value ..

eines? :value :value

(eines? :value :value :value ..

Function. Outputs False if all the inputs are false, true otherwise.

print or 1 > 2 3 <> 3

false

print (or 1 < 2 3

true

not :value

nicht :value

Function. Outputs false if argument is true, true if argument is false.

print not (1 > 2)

true

4 5 =

Word and list operations

(1) Selectors

Selectors are functions that extract part of its input. The input must be word or list.

)

3)

)

)

32

User Documentation

EN

EN

DE

DE

EN

EN

DE

DE

EN
DE

Lhogho: The Real Logo Compiler User Documentation

first :value EN
erstes :value DE
er :value

Function. If the input is a word, outputs the first character of the word. If the input is a
list, outputs the first member of the list.

print first 123
1
print first [abc xyz]

abc
firsts :list EN
alleerstes :list DE

aer :list

Function. Outputs a list containing the first of each member of the input list. It is an
error if any member of the input list is empty. The input itself may be empty, in which
case the output is also empty.

print firsts [123 456 789]

147
butfirst :value EN
bf :value
ohneerstes :value DE
oe :value
Function. If the input is a word, outputs a word containing all but the first character of
the input. If the input is a list, outputs a list containing all but the first member of the
input.

print butfirst 123

23

print bf [abc xyz klmn]

xyz kImn
butfirsts :list EN
bfs :list
ohneerstesalle :list DE

oea :list

Function. Outputs a list containing the butfirst of each member of the input list. It
is an error if any member of the input list is empty. The input itself may be empty, in
which case the output is also empty.

print butfirsts [123 456 789]

23 56 89

-33-

Lhogho: The Real Logo Compiler User Documentation

last :value EN
letztes :value DE
lz :value

Function. If the input is a word, outputs the last character of the word. If the input is a
list, outputs the last member of the list.

print last 123

3

print last [abc xyz]

XyZ
butlast :value EN
bl :value
ohneletztes :value DE
ol :value
Function. If the input is a word, outputs a word containing all but the last character of
the input. If the input is a list, outputs a list containing all but the last member of the
input.

print butlast 123

12

print bl [abc xyz klmn]

abc xyz
item :index :value EN
element :index :value DE

el :index :value

Function. If value is a word, outputs the index-th character of the word. If value is

a list, outputs the 1ndex-th member of the list. index starts at 1.

print item 1 "abc
a
print item 2 [abc xyz klmn]

Xyz
member :elem :value EN
elementab :elem :value DE

Function. If value is a word, outputs a subword starting from the first occurrence of
elem to the end or empty word if elem is not member of value. If value is a list,
outputs a new list containing elements of value starting from the first occurrence of

elem to the end or empty list it e lem is not member of value.

print member "e "Test
est
print member 2 [1 2 3]

34

Lhogho: The Real Logo Compiler User Documentation

23
substring :textl :text2 EN, DE

Function. Outputs the position of textl in text2 or outputs 0 if textl is not a sub-
string of text2. Both inputs must be words.

print substring [ope] "onomatopeia

7
print substring "a "onomatopeia
5
print substring "b "onomatopeia
0
pick :list EN
picke :list DE

Function. Outputs randomly selected element of its input, which must be a list.

print pick [1 2 3]

2

print pick [1 2 3]

1
remdup :value EN
entfdup :value DE

Function. Outputs a copy of value with duplicate members removed. If two or more
members of the input are equal, the rightmost of those members is the one that re-
mains in the output.

print remdup [1 2 1 32 142516 1]

342561

print remdup "121321425161

342561
remove :elem :value EN
entferne :elem :value DE

Function. Outputs a copy of value with every member equal to e lem removed.

print remove 1 [1 21 3 2142516 1]
2324256

print remove 1 121321425161

2324256

-35-

Lhogho: The Real Logo Compiler User Documentation

(2) Constructors

word :value :value EN
(word :value :value :value ..)
wort :value :value DE
(wort :value :value :value ..)

Function. Outputs a word formed by concatenating its inputs.

print word "Hello "-World
Hello-World

list :value :value EN
(list :value :value :value ..)
liste :value :value DE

(liste :value :value :value ..)
Function. Outputs a list whose members are its inputs, which can be any word or list.

print list "test 123

test 123

print (list [123] [123 123] "123)
[123] [123 123] 123

sentence :value :value EN
(sentence :value :value :value ..)

se :value :value

(se :value :value :value ..)

satzbilden :value :value DE

(satzbilden :value :value :value ..)
satz :value :value
(satz :value :value :value ..)

Function. Outputs a list whose members are its word-inputs that are words and the
members of its list-inputs.

print (se [12] [34 56] "78)

12 34 56 78
lastput :valuel :value2 EN
lput :valuel :value2
mitletztem :valuel :value2 DE
ml :valuel :value2
Function. If the second input is a list outputs a list equal to its second input with one
extra member, the first input, at the end. If the second input is a word, then the first
input must be a one-letter word, outputs word equal to second argument, but with first
input appended to the end.

36

Lhogho: The Real Logo Compiler User Documentation

print 1lput 1 123

1231

print 1lput [1 2 3] [1 2 3]

123012 3]
firstput :valuel :value2 EN
fput :valuel :value2
miterstem :valuel :value2 DE
me :valuel :value2
Function. If the second input is a list outputs a list equal to its second input with one
extra member, the first input, at the beginning. If the second input is a word, then the
first input must be a one-letter word, outputs word equal to second argument, but with
first argument inserted at the beginning.

print fput 1 123

1123

print fput [1 2 3] [1 2 3]
[1 23] 123

reverse :value EN

umkehrung :value DE

Function. If value is a list, outputs a list whose members are the members of the in-
put list, in reverse order. Otherwise outputs a word with the reversed order of charac-
ters of value.

print reverse [1 2 3 4 5 6 7]
7654321

print reverse "abcde

edcba
combine :valuel :value2 EN
kombinieren :valuel :value2 DE

Function. If value2 is a word, works like word :valuel :value2.Ifvalue2isa
list, works like fput :valuel :value2.

print combine 1 [1 2 3]

1123

print combine "Hello "-World

Hello-World
gensym EN
gisym DE
Function. Outputs a unique word each time it's invoked. The words are of the form G1,
G2, etc.

-37-

Lhogho: The Real Logo Compiler User Documentation

print gensym

Gl

print gensym

G2
quoted :value EN
zitiert :value DE

Function. If value is a list outputs value otherwise outputs value with quotation
mark prepended.

print quoted 123
""123

(3) Transformers

count :value EN
lange :value DE

Function. Outputs the number of characters in value, if it is a word; or the number of

members, if it is a list;

print count "Test

4
char :value EN
zeichen :value DE

Function. Outputs the character represented in the ASCII code by value, which must
be an integer between 0 and 255.

print char 67

C
ascii :value EN
asc :value DE

Function. Outputs an integer (between 0 and 255) that represents the input character
value in the ASCII code. Interprets some control characters as representing punctua-
tion in bars |..|, and returns the character code for the corresponding punctuation
character itself without vertical bars.

print ascii "a

97
rawascii :value EN
asc :value DE

Function. Outputs an integer (between 0 and 255) that represents the input character
value in the ASCII code.

38

Lhogho: The Real Logo Compiler User Documentation

print ascii " | (|

14
uppercase :value EN
grol :value DE

Function. Outputs a copy of the input word, but with all lowercase letters changed to

the corresponding uppercase letters.

print uppercase "Test

TEST
lowercase :value EN
klein :value DE

Function. Outputs a copy of the input word, but with all uppercase letters changed to
the corresponding loweracase letters.

print lowercase "Test

test

(4) Formatting

form :num :width :precision EN, DE

Function. Outputs a word containing a printable representation of num, possibly pre-
ceded by spaces, with at least width characters, including exactly precision digits
after the decimal point. If precision is -1 interprets width like format string.

(print "! form 3.1415926 20 5)

! 3.14159

(print "! form 3.1415926 " |%$.151f| -1)

I 3.141592600000000

format :data :format EN, DE

Function. Outputs a word containing a printable representation of data, according to

format string. For a list of supported date and time format string see Format strings

at page 101.
(print "! format 1234567 "%$.8X)
I 0012D687
formattime :data :format EN, DE

Function. Outputs a word containing a printable representation of data, according to
format string. The data is an integer number containing time measured in seconds
elapsed since 00:00:00 on January 1, 1970. For a list of supported date and time for-
mat string see Format strings at page 101.

-30-

Lhogho: The Real Logo Compiler User Documentation

make "time first filetimes "lhogho.exe
print formattime :time " |%d-%b-%Y $H:%$M:%S|
23-Jan-2012 13:12:16

timezone EN, DE

Function. Outputs the number of seconds between the local time and the correspond-
ing GMT time. The number is positive for time zones ahead of GMT, and negative
otherwise. For example, if the system’s time zone is GMT+2, then the function re-
turns 7200 (=2*60*60)

print timezone
7200

Control structures

Control structures determine how user program is executed — this includes loops, con-
ditional execution, passing result from callee to caller, and so on.

(1) Conditional execution

if :condition :command-list EN
if :condition :command-list :command-list

wenn :condition :command-list DE
wenn :condition :command-list :command-list
Command. If the condition is true then if executes the first command-list. If the
condition is fal se and there is a second command-list, then i T executes it.
to neg? :x
if :x=0
[(print :x [is zero])]
if :x<0
[(print :x [is negative])]
[(print :x [is not negative])]
end
neg? 5
5 1s not negative
if :condition :expression-list :expression-list EN

wenn :condition :expression-list :expression-list DE

Function. When used as a function i T has three inputs. The last two are lists contain-
ing an expression each. The value of one of these expressions is the output of the if

function.

repeat 4 [print repcount*if repcount>2 [1] [-1]]

40

Lhogho: The Real Logo Compiler User Documentation

-1

-2

3

4
ifelse :condition :command-list :command-list EN
wennsonst :condition :command-list :command-list DE

Command. The command ifelse is equivalent to the command if and the only dif-
ference is that ifelse expects exactly two command-lists, while i accepts either

one or two.
ifelse :condition :expression-list :expression-list EN
wennsonst :condition :expression-list :expression-list DE

Function. The function i felse is equivalent to the function if.

\subsection logo controls test Command "TEST"

test :condition EN, DE

Command. The command test remembers the condition which must be either true

or false. The condition is later used by commands i ftrue and i ffalse.

make "a sin 45

test :a>0.5

iftrue [print [sin(45) > 0.5]]

sin(45) > 0.5
iftrue :commands EN
wennwahr :commands DE
wWw :commands
Command. Executes the commands if the input of the latest test command within

the current procedure was true.

iffalse :commands EN

wennfalsch :commands DE
wf :commands

Command. Executes the commands if the input of the latest test command within

the current procedure was false.

41-

Lhogho: The Real Logo Compiler User Documentation

(2) Loops
repeat :count :command-list EN
wiederhole :count :command-list DE

wh :count :command-list

Command. Executes the command-list count number of times. The number of
repetitions must be an integer number from 0 to 2147483647 inclusive. In case of 0

the command-1ist is not executed.

make "a 1

repeat 3

[
(print (word :a "* :a) "= :a¥*:a)
make "a :a+l

]

11 = 1

2*2 = 4

3*3 =9
repcount EN
whzahl DE

Function. It is used only inside repeat loop and returns the iteration number of this
loop. The first iteration is number 1.

repeat 3 [print repcount]

1

2

3
forever :command-list EN
andauernd :command-list DE

Command. Executes the command-list forever. This infinite cycle can be exited

with stop or output commands only.
make "a 1

forever

[
print int :a
if :a>100 [output]

make "a pi*:a

42

Lhogho: The Real Logo Compiler User Documentation

9
31
97
306

for :var :limits :command-list EN

fur.bis :var :limits :command-list DE

Command. Executes the command-list predefined number of times. The first input
must be a word literal, which will be used as the name of a control variable. The sec-
ond input must be a list of two or three expressions — the starting value of the control
variable, the limit value of the variable; and optionally the step size. If the third mem-
ber is missing, the step size will be 1 or -1 depending on whether the limit value is
greater than or less than the starting value, respectively. The third input is a list of
commands. The effect of for is to run command-list repeatedly, assigning a new
value to the control variable each time.
for "i [1 4]
[
(type :i "-)
for "j [1 :i] [type :3j]
print
1
1-1
2-12
3-123
4-1234

while :condition :command-list EN
.solange :condition :command-list DE

Command. Executes the command-list while the condition is true. If the first

evaluation of the condition is false, then the command-list is not executed at
all.

make "a 1

make "n 1

while :a<10

[
(print word "2 :n "= :a)
make "a 2%*:a
make "n :n+l

1
271 = 1

-43-

Lhogho: The Real Logo Compiler User Documentation

2"2 = 2

2"3 = 4

2"4 = 8
do.while :command-list :condition EN
fihreaus.solange :command-list :condition DE

Command. The command do.whi le is the same as whi le, only the order of inputs

1s reversed and the command-list is executed once before the first check of the

condition.
until :condition :command-list EN
.bis :condition :command-list DE

Command. Executes the command-1ist until the condition becomes true. If the

first evaluation of the condition is true, then the command-list is not executed at
all.

make "a 1
make "n 1
until :a>=10
[
(print word "2 :n "= :a)
make "a 2*:a
make "n :n+l
1
27N =
272 =
273 =
274 =

o A~ N P

do.until :command-list :condition EN
fiuhreaus.bis :command-list :condition DE

Command. The command do.until is the same as until, only the order of inputs
1s reversed and the command-list is executed once before the first check of the
condition.

(3) Execution

run :instructions EN

tue :instructions DE

Command and function. Runs the instructions which must be a list. If the instruc-
tions are commands, then return nothing. Otherwise, if the instructions is a list

containing an expression, evaluate it and return its value.

44

Lhogho: The Real Logo Compiler User Documentation

run [print 2%*3]

6

print run [2%*3]

6
runresult :instructions EN
tuewert :instructions DE

Function. Runs the instructions which must be in a list. If the instructions are
commands, then return an empty list. Otherwise, if the instructions is a list con-
taining an expression, evaluate it and return a list containing its value.

make "x 10

print runresult [print :x*:x]
100

print runresult [:x*:x]

100
runmacro :instructions EN
tuemakro :instructions DE

Command. Runs the instructions which must be a list. Variables, functions and

commands created as local entities inside runmacro persist after the end of the exe-
cution of instructions.

runmacro [
local "a
make "a 5
to double :x
output 2*:x
end]
run [
print :a
print double 4
1

5

8
load :filename EN
lade :filename DE

Command. Runs the instructions in a text file with a given filename as if they are
included in the place of the load command. The filename may include relative or

absolute path. If there is no path then the file is searched in the current folder. If there
is relative path, it is relative to the current folder.

-45-

Lhogho: The Real Logo Compiler User Documentation

Note: Lhogho processes the load command during parsing, i.e. before actually run-
ning the program. This requires that the filename is a literal constant.

If LIB.LGO contains these commands :

make "libver "1.2beta
to max :za :b

if a>:b [output :a] [output :b]
end

then it can be loaded by load command:

load "lib.1lgo

(print "Version :libver)
Version 1.2beta

print max 6 10

10

(4) Exits and tags

output :value EN
op :value

ruckgabe :value DE
rg :value
Command. Ends the execution of the current function and returns to the caller the
value of its input. Note that output is not a function and it does not return a value —
it forces the current function to end and return a value.

to mysqgr :x

output :x*:x
end

print mysqr 2

4
maybeoutput :source EN
magseinrickgabe :source DE

Function or Command. Ends the execution of the current function and returns to the
caller the value of its input (if any). If source is an expression, then maybeoutput
acts like output. If source is not an expression, then maybeoutput acts like stop.

to func :pattern :x
maybeoutput run :pattern

end

print func [:x*sin :x] 30

15

46

Lhogho: The Real Logo Compiler User Documentation

func [print :x*sin :x] 30

15
stop EN
riuckkehr DE

rk

Command. Ends the execution of the current function without passing any return
value.

to mysqr :x

(print "x "= :x*:x)
stop
print [Beyond stop]
end
mysqgr 2
X =4
bye EN
ade DE

Command. This command is used to terminate program execution.

print [Before bye]

Before bye

bye

print [Never reach this code]
tag :word EN
schildchen :word DE

Command. The tag command defines a place within the current procedure. This
place can be used by the goto command to change the execution path. The name of

the tag must be a quoted word. Tags are always local to the procedure where they are
defined.

make "a 1

tag "again

make "a 3*:a

if :a<30 [goto "again]
3

9

27

47-

Lhogho: The Real Logo Compiler User Documentation

goto :word EN
gehe :word DE

Command. The goto command forces the execution to continue from the place
named by a tag. The tag could be a quoted word or an expression which value is the
name of an existing tag. Tags are always local to the procedure where they are defined,
s0 it is not possible to jump from one procedure to another.

(5) Miscallaneous

ignore :value EN

ignoriere :value DE

Command. This command is used to evaluate an expression and ignore its value. This
operation makes sense only if the evaluation of the expression has side effects, which
are not ignored.
to mysqr :x
(print "x "= :x*:Xx)
output :x*:x
end

ignore mysqr 2

X = 2
wait :value EN
warte :value DE

Command. This command is used to suspend program execution for value 60™ of a

second.

print [Sleeping for 5 seconds]
Sleeping for 5 seconds

wait 300

print [After sleep]

After sleep

Files and folders

Commands and function for files and folders are used to work with the directory
structure. All names of folders are words that may contain just a folder’s name, a rela-
tive folder path or an abstract folder path. There are two folders with special names:

the folder called . represents the current folder, and . . represents the parent folder.

48

Lhogho: The Real Logo Compiler User Documentation

(1) Folders

currentfolder EN, DE
Function. Returns a word containing the name of the current folder.

print currentfolder
c:\lhogho\

changefolder :name EN, DE
Command. Changes the current folder.

print currentfolder
c:\lhogho\
changefolder "..
print currentfolder
c:\
makefolder :name EN, DE

Command. Creates a new folder with a given name. The new folder is placed in the

current folder unless name contains relative or absolute path.

The following example creates two folders: main in the current folder, and folder
other in main.

makefolder "main
makefolder "main/other

erasefolder :name EN, DE

Command. Erases a folder with a given name. The folder must be empty, otherwise
the folder will not be erased.

The following example deletes two folders. Note, that other is erased before main.

erasefolder "main/other

erasefolder "main
renamefolder :name :newname EN, DE
Command. Renames a folder with a given name to a new name given in newname.

renamefolder "main "mainobj

folder? :name EN, DE
folderp :name

Function. If name is a valid name (or path) of a folder and this folder exists, outputs
true, otherwise false.

print folder? "lhogho.exe
false

-49-

Lhogho: The Real Logo Compiler User Documentation

makefolder "main
print folder? "main

true

folders :name EN, DE

Function. Returns a list of the names of all folders in a folder with a given name. The
order of the names in the returned list is undefined.

makefolder "main
makefolder "main/this
makefolder "main/that
print folders "main

. .. that this

To get a list of folders in the current folder use one of the following two ways:

print folders currentfolder
print folders ".

(2) Files
files :name EN, DE

Function. Returns a list of the names of all files in a folder with a given name. The

order of the names in the returned list is undefined.
print files "main
To get a list of files in the current folder use one of the following two ways:

print files currentfolder
print files ".

file? :name EN, DE
ffilep :name

Function. If name is a valid name (with or without path) of an existing file then out-
puts true, otherwise false.

print file? "readme.txt

erasefile :name EN, DE
erf :name

Command. Erases a file with a given name.

erasefile "readme.txt
renamefile :name :newname EN, DE
Command. Renames a file with a given name to a new name given in newname.

renamefile "'readme.txt "readmenow.txt

50

Lhogho: The Real Logo Compiler User Documentation

filesize :name EN, DE

Function. Returns the size of a file with given name. The size is measured in bytes. If
a file with such name does not exist or is inaccessible, then outputs -1.

print filesize "readme. txt
filetimes :name EN, DE

Function. Returns a list of three integer numbers representing the times of a file with
given name. The times are: time of file creation, time of last modification and time of
last access.. If a file with such name does not exist or is inaccessible, then outputs an
empty list.

The times represent the number of seconds elapsed since 00:00:00 on January 1, 1970.

They can be converted into a calendar time with formattime.

make "time filetimes "lhogho.exe

print :time

1327317136 1327328139 1327330287

print formattime first :time " |%d-%b-%Y|
23-Jan-2012

(3) Opening and closing files

Whenever you want to work with the content of a file it must be first open with the
command openfi le or one of its variations: openread, openwrite, openappend
and openupdate. The successful opening of a file generates a unique number called
handle which is used to manage the content of the file. There is a system defined
number of maximal 20 simultaneously opened files. A list of the names of all opened
files can be retrieved with al lopen.

Some file operations may use either file handles or file names to identify a file.
Lhogho does not know which one is actually used, so it first searches for opened han-
dles, and if not found it searches for opened file names.

When the managing of the file content is done, the file must be closed with the com-
mands closefile or closeall. Closing a file releases a slot so that a new file can
be opened. When Lhogho exits it will automatically close all opened files.

openfile :filename :mode EN
O0ffnedatei :filename :mode DE

Function or command. Opens a file with given Filename. The mode determines how
the file is opened and what operations will be performed on it:

r opens an existing file for reading

w opens (or creates) a file for writing

-51-

Lhogho: The Real Logo Compiler User Documentation

a opens (or creates) a file for appending
r+ opens an existing file for reading and writing
w+ opens (or creates) a file for reading and writing

a+ opens (or creates) a file for reading and appending
An additional character may appear after these:

X does not allow openfi le to overwrite existing file

b the file is a binary file

If openfile is used as a function, then the returned value of is an OS-dependent file
handle (i.e. a number), which identifies the file. This handle maybe used by the other
file functions.

If openfile is used as a command, then the file handle is not returned. Other com-
mands that refer to the opened file should use its name.

openread :filename EN, DE

Function or command. Opens a file with a given fi lename for reading. The read po-
sition is initially at the beginning of the file. The function is equivalent to openfile

with mode r.

openwrite :filename EN, DE

Function or command. Opens a file with a given fi lename for writing. If the file al-
ready existed, the old version is deleted and a new, empty file created. The function is

equivalent to openfi le with mode w.

openappend :filename EN, DE

Function or command. Opens a file with a given Filename for appending. If the file
already exists, the write position is initially set to the end of the old file, so that newly
written data will be appended to it. The function is equivalent to openfile with

mode a.

openupdate :filename EN, DE

Function or command. Opens a file with a given Filename for updating. The read
and write positions are initially set to the end of the old file, if any. The function is

equivalent to openfi le with parameter mode r+.

allopen EN, DE

Function. Outputs a list of the names of all files opened with any of the functions
openfile, openread, openwrite, openappend or openupdate. The names are
not ordered.

52

Lhogho: The Real Logo Compiler User Documentation

closefile :file EN
schlieBedatei :file DE

Command. Closes a file opened with openfile. The input must be either a name of
an opened file or a valid file handle.

closeall EN, DE

Command. Closes all files opened with any of the functions openfile, openread,
openwrite, openappend or openupdate.

(4) Accessing file contents

The functions for accessing the file content work only with already opened files.
Some file operations use file handles as input. If they cannot find opened file with this
handle, they assume that the input is a name of a file and search the list of opened
files by name.

For historical reasons Lhogho assign roles of two of the files:

Reading file — this is a file from which reading is done. At every moment there is at
most one reading file. By default, reading is done from the default input device (usu-
ally the terminal or the keyboard).

Writing file — this is a file to which writing is done. At every moment there is at most
one writing file. By default, writing is done to the default output device (usually the
terminal or the console window).

Setting and querying the roles of the files is done by reader, writer, setread, and
setwrite. If a reading/writing file is a true file (i.e. it is not the terminal), then it is
possible to set or to query the reading/writing position with readpos, writepos,
setreadpos, and setwritepos.

The function eof? can be used to check whether there is more text data to read from
the current input. If the input is the terminal, the typing of Ctlr-Z (for Windows) or
Ctrl-D (for Linux) is considered as the end of the input.

Follows an example of writing the numbers 1 to 10 and their squares into the text file
square . txt:

make "file openwrite "square.txt
setwrite :file
for "i [1 10] [(print :i "* :i "= :i*:i)]

closefile :file

The contents of square.txt file will be:

1*1=1
2*2 =14

-53-

Lhogho: The Real Logo Compiler User Documentation

3*3=09
4 * 4 = 16
5 * 5 = 25
6 * 6 = 36
7 * 7 = 49
8 * 8 = 64
9*9 =281

10 * 10 = 100

The next example shows how to read line-by-line the already created square.txt
text file and print its content to the terminal. The example assumes the number of
lines in the text file is unknown.

make "file openread ''square.txt

setread :file
while not eof? [print readword]

closefile :file
setread :file EN, DE
Command. Makes an opened file the default file for reading. If i le is the empty list,
then reading is done from the default input device (e.g. the terminal), otherwise File
must be either a name or a handle of an opened file. Changing the reading does not

close the file that was previously used for reading, so it is possible to alternate be-
tween files.

setwrite :file EN, DE

Command. Makes an opened file the default file for writing. If i le is the empty list,
then writing is done to the default output device (e.g. the terminal or the console),
otherwise file must be either a name or a handle of an opened file. Changing the
writing does not close the file that was previously used for writing, so it is possible to
alternate between files.

reader EN, DE

Function. Outputs the name of the file currently used for reading, or the empty list if
reading is done from the default input device (e.g. the terminal or the console).

writer EN, DE

Function. Outputs the name of the file currently used for writing, or the empty list if
writing is done to the default output device (e.g. the terminal or the console).

setreadpos :position EN, DE

Command. Sets the reading position of the current reading file to a given position.
The first byte of a file has position 0.

54

Lhogho: The Real Logo Compiler User Documentation

setwritepos :position EN, DE

Command. Sets the writing position of the current writing file to a given position.
The first byte of a file has position 0.

readpos EN, DE

Function. Outputs the current reading position of the reading file.

writepos EN, DE

Function. Outputs the current writing position of the writing file.

(5) Text input/output

Lhogho supports several commands to write text to the console or to a file; as well as
several functions to read text from the console or from a file. Initially text reading and

text writing is associated with the terminal or the console.

If setwrite defines a writing file, then the text output commands print, type and
show will start writing text to that file. If setread defines a reading file, then the text
input functions readchar, readchars, readrawline, readword and readlist
will start reading text from that file.

print :value EN
(print :value :value ...)

pr :value

(pr :value :value ...)

druckezeile :value DE
(druckezeile :value :value ...)

dz :value

(dzvalue :value ...)

? :value EN, DE
(? :value :value ...)

Command. Prints its input(s) to the current output device. The command can accept
more inputs, and in this case they are printed separated by a space. After each print
a newline character is automatically printed. If the input is a list the outer square
brackets are omitted. A print without any inputs creates an empty line.

print "a

a

(print "a "b "c)

abc

The actual printed text depends on the values of variables printdepthlimit,
printwidthlimitand fullprintp.

-55-

Lhogho: The Real Logo Compiler User Documentation

type :value EN
(type :value :value ..)

drucke :value DE
(drucke :value :value ..)

dr :value

(dr :value :value ..)
Command. Prints its input(s) like print, except that no newline character is printed

at the end and multiple inputs are not separated by spaces.
(type 12 [1 2 3] "test)
type [1 2 3]
121 2 3testl 2 3

show :value EN
(show :value :value ..)

zg :value DE
(zg :value :value ..)

Command. Prints its input(s) like print, except that outermost square brackets of
lists are printed.

show [1 2 3]

[1 2 3]
readchar EN
rc
lieszeichen DE
lzeichen

Function. Reads a character from the standard input (usually the keyboard) and re-
turns it as a word. If there are no more characters returns an empty list or waits for the
user to type a character. Note that depending on the input policy of the operating sys-
tem characters typed at the command prompt could be made available to readchar

only when a complete line has been entered by pressing the [Enter] key.
Readchar function does not process any special characters.

readchars :number EN
rcs :number

lieszeichenkette :number DE
lzk :number

Function. Reads number characters from the standard input (usually the keyboard)
and returns them as a word. If there are no more characters returns an empty list or
waits for the user to type characters. Note that depending on the input policy of the
operating system characters typed at the command prompt could be made available to
readchars only when a complete line has been entered by pressing the [Enter]
key.

56

Lhogho: The Real Logo Compiler User Documentation

Readchars function does not process any special characters.
readrawline EN
liestasten DE

Function. Reads a line from the standard input (usually the keyboard) and returns it as
a word. If there are no more characters returns an empty list or waits for the user to

type characters.

Readrawl ine function does not process any special characters.

readword EN
rw
lieswort DE
1w

Function. Reads a line from the standard input (usually the keyboard) and returns it as
a word. If the word contains backslashes \ or vertical bars |..| then they are proc-
essed according to the data tokenization rules of Lhogho. If there are no more charac-

ters readword returns an empty list or waits for the user to type characters.

readlist EN
rl
liesliste DE
11

Function. Reads a line from the standard input (usually the keyboard) and returns it as
a list. All special characters except for the semicolon ; are processed according to the
data tokenization rules of Lhogho. If there are no more characters readword returns
an empty word (not an empty list) or waits for the user to type characters.

eof? EN
eofp

dateiende? DE
dateiendep

Function. Outputs true if there are no more characters to be read from the standard

input, false otherwise.

(6) Binary input/output

Operations for reading and writing from binary files require that the files are opened
with openfile with mode referring explicitly binary files (e.g. rb or wb). Using the
other file opening commands (openread, openwrite, etc.) may case wrong data to
be transferred, because it is treated as text — some bytes have special meaning in text
files, like LF (Line feed), CR (Carriage return) and others.

-57-

Lhogho: The Real Logo Compiler User Documentation

Binary input and output in Lhogho uses blocks to transfer binary data. For more in-
formation about blocks refer to page Error! Bookmark not defined..

readblock :size EN
readblock :blockdef
liespackung :size DE

liespackung :blockdef

Function. Reads size bytes from the current reading file and returned them in a
newly allocated memory block. If there are not enough data in the file or if the read-
ing file is the default input device (usually the terminal or the keyboard), then an
empty list is returned. If the input is a list defining a block structure, then the size of
the block is calculated based on the block structure.

The function blocktol ist can be used to convert the read data into Logo data.

Function eof? could be used to check for the end of file. However, if the last unread
portion of the file is smaller than size, then eof? before the reading will be false,
readpack will still return an empty list, and just after that, eof? will start returning
true.

readinblock :block EN, DE

Function or command. Reads from the current reading file as much data as to fill in an
existing block. If there are not enough data in the file or if the reading file is the de-
fault input device (usually the terminal or the keyboard), then an empty list is returned,
otherwise the same block is returned.

The main feature of readinblock is that it reuses a block as a buffer for reading.

The other function, readblock, creates a new block for each execution.

The next example shows a typical usage of readinblock (assuming it uses the block
buf as a buffer):

make "buf readblock :buf
If the result of the reading (success or failure) is not needed, then readinblock can
be used as a command:

readblock :buf

writeblock :block EN
schreibepackung :block DE

Command. Writes the data from a memory block to the current writing file, which
must be opened for writing, updating or appending. If the writing file is the default
output device (usually the terminal or the console) then nothing is written.

58

Lhogho: The Real Logo Compiler User Documentation

The functions listtoblock and Iistintoblock can be used to convert Logo data
into a memory block.

The following example creates a binary file of 6 bytes and then reads them back:

make "def [ul ul ul ul ul ul]

make "file openfile "packopen.dat "wb
setwrite "packopen.dat

writepack listtoblock [1 2 3 4 5 -1] :def

closefile "packopen.dat

make "file openfile "packopen.dat "rb
setread "packopen.dat

make "data blocktolist readblock :def :def
closefile "packopen.dat

print :data

12345 255

Variables
make :varname :value EN
setze :varname :value DE

Command. Sets the value of variable called varname. If the variable does not exist,
then it is created as a global one.

make "a 10

make "c :a+count [some text]

print :c
12
name :value :varname EN. DE

Command. Sets the value of variable called varname. If the variable does not exist,
then it is created as a global one. The name command is the same as make except that
its inputs are in reversed order.

name 10 "a

name :a+count [some text]
print :c

12

-59-

Lhogho: The Real Logo Compiler User Documentation

local :varname EN
(local :varname :varname :varname ..)
lokal :varname DE
(local :varname :varname :varname ..)

Command. Create local variables with given names. The variables are local to the cur-

rently running procedure. The initial value of the variables is set to the empty list [].

make "a 10
to test
local "a

make "a 20

print :a

end

print :a

10

test

20

print :a

10
thing :name EN
wert :name DE

Function. Outputs the value of the variable whose name is the input name. If there is
more than one such variable, the innermost local variable of that name is chosen.

make "a [One mouse]

print thing "a

One mouse
defined? :name EN
definedp :name
def? :name DE

defp :name

Function. If the value of name is a name of a user-defined function or command (but
not a variable), then outputs true. Otherwise outputs false.

make "a 10

to test

end

print defined? "a
false

print defined? "test
true

60

Lhogho: The Real Logo Compiler User Documentation

define :name :text EN
definiere :name :text DE
def :name :text

Command. Defines or redefines a procedure with given name and text. The text
input must be a list whose elements are lists. The first element is a list of inputs
[[left-inputs] right-inputs]. The remaining elements make up the body of
the procedure.

The command define can define prefix, infix and suffix procedures. This is con-
trolled by how formal inputs are described.

A prefix procedure can be defined in these ways:

to mux :a :b

end
define "mux [[a b] ...]
define "mux [[[] a b] ...]

An infix procedure can be defined in these ways:

to :a mux :b
end

define "mux [[[a] b] ...]

A suffix procedure can be defined in these ways

to :a :b mux
end

define "mux [[[a b]] ...]

There are two ways to execute a procedure which is defined at run-time. Note that
Lhogho is a compiler, so it should process the call after the called procedure is de-
fined. To implement this, execution can be delayed with the run command. In the
next example the print statement is processed at run-time after mux is already de-
fined and compiled.

define "mux [[x y] [output :x+:y]]
run [print mux 1 2]
3

The other alternative is to provide an empty prototype of the procedure.

to mux :x :y

end

define "mux [[x y] [output :x+:y]]
print mux 1 2

3

-61-

Lhogho: The Real Logo Compiler User Documentation

procedure? :name EN
procedurep :name

prozedur? :name DE
prozedurp :name

Function. If the value of name is a name of a function or command (but not a vari-
able), then outputs true. Otherwise outputs false.

make "a 1

to test

end

print procedure? "a

print procedure? "test

print procedure? "make

false

true

true
primitive? :name EN
primitivep :name
grundwort? :name DE
grundwortp :name
Function. If the value of name is a name of a primitive function or command (but not

a variable), then outputs true. Otherwise outputs false.

to test

end

print primitive? "test

print primitive? '"make

false

true
name? :name EN, DE
namep :name
Function. If the value of name is a name of a variable, then outputs true. Otherwise
outputs false.

make "a 1

print name? "a
true

print name? "make

false

62

Lhogho: The Real Logo Compiler User Documentation

Advanced primitives

(1) Lhogho System variables
:logoplatform EN
:logoplattform DE

Variable. This variable contains a word describing the platform. Currently it is either
Windows or Linux.

print :logoplatform
Windows

:logoversion EN, DE

Variable. This variable contains a number describing the Logo major and minor ver-
sion — i.e the first two numbers from the full version number.

print :logoversion

0.0
:logodialect EN
:logodialekt DE

Variable. This variable contains a word describing the Logo dialect. Currently it is
Lhogho.

print :logodialect

Lhogho
:printdepthlimit EN
:druckelistentiefe DE

Variable. A variable called printdepthlimit indicates how many levels of list
nesting to print. If the variable is a non-negative integer value, the list will be printed
only to the allowed depth.

make "a [a [b [c d] e [£ g] h] i []j]]

make "printdepthlimit 2

print :a

afb ... e ... h] 1]l

make "printdepthlimit O

print :a

It is possible to create a local printdepthlimit and it will be used instead of the

global system-defined one.

-63-

Lhogho: The Real Logo Compiler User Documentation

:printwidthlimit EN
:druckelistenmdchtigkeit DE

Variable printwidthlimit affects how many elements form the beginning of list
or a word to print. If the variable is a non-negative integer value, only the first
printwidthlimit elements will be printed. All the rest will be replaced by a single
elipses. For words values between 0 and 9 (inclusive) are treated as if printwidth-
limitis 10.

make "printwidthlimit 2

print [a [b [c d] e [f g] h] i []]]

a[b [cd] -..]

print "abcdefghijklmnopgrstuvwxyz

abcdefghij. ..

It is possible to create a local printwidthlimit and it will be used instead of the
global system-defined one.

:fullprintp EN
:vollelistentiefep DE

Variable. If a variable called ful Iprintp is true then words are printed with vertical
bars and backslashed in a way to allow Lhogho to reread and reparse them. Words
printed under the effect of ful Iprintp does not necessarily have the same charac-

ters as in the original source.

make "a [spaced\ word |barred word| |barred \| bar|]
print :a

spaced word barred word barred | bar

make "fullprintp "true

print :a

|spaced word] |barred word|] |barred \| bar]
If funnprintp is true then the empty word is printed as | |.

It is possible to create a local fFul Iprintp and it will be used instead of the global
system-defined one.

:caseignorep EN
:groBkleinschrift.ignoriertp

Variable. If a variable called caseignoredp is true or is not defined, then words
are compared case insensitively (ABC equals Abc). If the variable is false, then

words are compared case sensitively (ABC differs from Abc).

The caseignoredp variable affects equalp, equal?, =, notequalp, notequal?,
<>, memberp, member?, and member.

64

Lhogho: The Real Logo Compiler User Documentation

print "ABC = "abc

true

make "caseignoredp "false
print "ABC = "abc

false

It is possible to create a local caseignoredp and it will be used instead of the global
system-defined one.

(2) Run-time functions and commands

text :name EN, DE

Function. Outputs a list containing the definition of a user-defined function or com-
mand with given name. The first element of the list is a list of the inputs' names. The
other elements represent individual lines from the body of the function.

to proc :a :b :c
print 1
print 2 print 3
print 4
end
print text "proc
[a b c] [print 1] [print 2 print 3] [print 4]

If the user-defined function is infix or postfix, then the names of the left inputs are
grouped in a sublist within the first element of the result — i.e. just before the first
right input.

to :a procl :b :c

end

to :a :b proc2 :c

end

to :a :b :c proc3

end

print text "procl

[[2] b c] [print 1]

print text "proc2

[[a b] c] [print 2]

print text "proc3

[[a b c]] [print 3]

The result of text is accepted as an input of define.

-65-

Lhogho: The Real Logo Compiler User Documentation

fulltext :name EN
volltext :name DE

Function. Outputs a word containing the definition of a user-defined function or com-
mand with given name. The result includes the definition from to to end inclusive.
Spacing, formatting, continuation characters etc. are preserved. Dynamically created
function for which there is no source, produce the same result with ful I text as with
text.

to myfunc :a ;test function
print :a
(print :a ~
a*:a)
end
print fulltext "myfunc
to myfunc :a ;test function
print :a
(print a ~
a*za)
end

The result of Full Itext can not be accepted as an input of define.

(3) Parsers

parse :value EN
parsatz :value DE

Function. Parses value as if it contains Logo data. The value can be a word or a list.
If it is a list, then each element is parsed individually.

print parse [print l+count "boza]
print l+count "boza
print parse [1+7?37 1-555]

1+?37 1-555
runparse :value EN
tueparsatz :value DE

Function. Parses value as if it contains Logo commands. The value can be a word or
a list. If it is a list, then each element is parsed individually. Nested sublist are not
parsed as commands, but as data.

print runparse [print l+count "boza]
print 1 + count "boza
print runparse [1+4+?37 1-555]

66

Lhogho: The Real Logo Compiler User Documentation

1+ (C?37)1- 555

(4) Error handling

throw :tag EN
(throw :tag :value)

wirf :tag DE
(wirf :tag :value)
Command. This command is used to generate a special event (called exception). Ex-
ceptions cause the program to terminate unless they are captured and processed by a
catch command with the same tag. The throw command has 6 variants depending
on the number of inputs and the contents of the tags.

throw "toplevel EN
(throw "toplevel :value)

wirf "ausstieg DE
(wirf "ausstieg :value)
The tag toplevel forces the program to terminate and to return to the top level —if a
GUI is running the top level is the GUI itself; if a console version of Lhogho is used,
then top level is the command prompt.

throw "system EN
(throw "system :value)

wirf "system DE
(wirf "system :value)

To exit the running program and the GUI the tag system can be used.

print "before
throw "system

print "after

before
throw "error EN
(throw "error :value)
wirf "fehler DE

(wirf "fehler :value)

The tag error causes throw to generate a user-defined error exception. Using tag
error without a second input cases the error to be reported at the tag. If a second in-
put is present then it is used as an error message. In this case the error is reported at

the command in which throw is used.

to diff :x :y
if not number? :x [(throw "error [Not a number])]

if not number? :y [(throw "error [Not a number])]

-67-

Lhogho: The Real Logo Compiler User Documentation

output :x-:y
end
print diff 5 pi
print diff 10 "pi
1.85840734641021
{ERR#30@217} - Not a number
print diff 10 "pi

N

If the tag is another word, then it is expected that the exception will be captured by
catch with the same tag. If a second input is not provided then catch does not out-
put any value too. If a second input is present, then it is the value output by the catch
with the same tag.

to reciprocal :x
if not number? :x [(throw "oops 0)]
output 1/:x

end

print catch "oops [reciprocal 5]

0.2

print catch "oops [reciprocal "five]

0
catch :tag :commands EN
fange :tag :commands DE

Command and function. This command is used to catch exceptions generates in the
commands during their execution. Catching is successful only if the tag of catch
and throw are the same, or if the tag of catch is error and the exception in com-

mands is caused by an error.

catch can be a command and a function. The result of catch is the value provided
as a second input to the corresponding throw. However, the second input to error

thows are used as error messages, not as outputs of catch.

Only run-time errors related to the execution of user-program can be captured. Errors
related to source parsing, for example, could not be captures because they are trig-
gered before corresponding catch is activated.

catch "error

[
print 1/5
print 1/"five

68

Lhogho: The Real Logo Compiler User Documentation

0.2
error EN
fehler DE

Function. The function error is used to get information about the last captured error
with catch. If there was no any captured error, then the result is an empty list. Oth-

erwise it is a list with four elements:
e code — an integer number identifying the type of the error;
e message — a word containing the error message as text;

e procedure — a word containing the name of the user-defined procedure
where the error has occurred. If the error happened at top level, this element is
an empty list;

e source — a list containing the statement where the error has occurred. The
statement is represented in a prefinx notation, fully parenthesized.

The last captured error is forgotten after using error.

to test :n
print 1/:n
end
catch "error [test "two]
make "err error
(print [Error code:] item 1 :err)
Error code: 13
(print [Error text:] item 2 :err)
Error text: Not a number
(print [Error place:] item 3 :err)
Error place: test
(print [Error statement:] item 4 :err)

Error statement: (test "two)

(5) OS-related functions

This section describes functions which support the communication between Logo

programs and the operating system.

commandline EN
kommandozeile DE

Function. Returns a list of all command-line parameters which are not processed by
Lhogho itself. These parameters are the one after the name of the Logo program being
executed. For example, the command line for:

-69-

Lhogho: The Real Logo Compiler User Documentation

$ lhogho -Zm primes.lgo 50
2357 11 13 17 19 23 29 31 37 41 43 47
{MEM#0}

is the list [50], while —Zm and primes. Igo are processed by Lhogho and are not
available to the user program. The same command line is for this case of running
compiled primes:

$ lhogho -x primes.lgo
$./primes 50
2 357 11 13 17 19 23 29 31 37 41 43 47

getenv :name EN
gibumgebungsvariable :name DE

Function. Returns the value of an environment variable with given name. An empty

word is returned in the name does not exist.

type "USER=
print getenv "USER
USER=Lhogho

getenvs EN
gibumgebungsvariablen DE

Function. Returns a list with the names and the values of all environment variables.
Each name and value are grouped: [[namel valuel] [name2 value2] ..]. To
get the value of a single variable it is faster to use getenv. The next example prints

the names and the values of 5 environment variables.

make "a getenvs

repeat 5

[
(type first first :a "= char 9)
print last first :a

make "a bf :a

]

WINDIR= C:\WINDOWS
USER= Lhogho
TERM= cygwin
PROMPT= $PSG
MAKE_MODE= unix

70

Lhogho: The Real Logo Compiler User Documentation

Low-level access

This section describes function and commands used to access external functions and

to deal with data stored in computer's memory.

IMPORTANT NOTE! THESE FUNCTIONS ARE SENSITIVE. THEY DEAL
WITH CODE AND DATA WHICH IS BEYOND LHOGHO’S CONTROL. IF
MISUSED THEY MAY CAUSE SYSTEM INSTABILITY OR EVEN CRASH.

(1) Native data types

Native data types express data in an efficient processor-friendly manner. Examples for
native types are bytes and pointers. Logo data (numbers, words, lists) are not native

types.

Lhogho uses native data types for various purposes:

e To communicate with modules written in another programming language,

so that Lhogho can use their functions, and they can use Lhogho functions.

e To read and write data to binary files. These data could be structured (e.g.
a file of 128-bytes records of patients) or unstructured (e.g. a sequence of
bytes).

e To convert Logo data to binary data and vice versa.

Native types supported by Lhogho are named by a character indicating the group and

a number indicating the size of the type.

The following table lists the native types.

Size

Type (la bytes) Explanation Externals | Blocks

11 1
12 2 . .
7 4 Signed integer number Yes Yes
18 8
ul 1
u2 2 . .
Ua 4 Unsigned integer number Yes Yes
us 8
F4 . .
= g Floating point number Yes Yes
S1 4 Pointer to string of 1-byte characters

: . Yes No
S2 4 Pointer to string of 2-byte characters
P4 4 Pointer Yes Yes
A4 4 Atom (the internal Lhogho datum) No Yes
VO 4 Void Yes No

71-

Lhogho: The Real Logo Compiler User Documentation

Note that not all native types are available for all functions that use them. For example,
prototypes of external functions cannot use A4 format, while block functions cannot
use S1, S2 and VO formats.

In many cases communication with native data types uses larger structures that are
composed of several and usually different native types.

Lhogho represents the definition of such structures (called block definitions) as list of
native types. The next example shows a block definition of a 3D point with integer
coordinates:

[i4 i4 i4]
It is possible to put block definitions inside other block definitions. Thus, a segment
defined by two points could be expressed as:

[[i4 14 i4] [i4 i4 i4]]
When an element in a block definition is repeated many times it is possible to use

multipliers. A multiplier is a number that determines how many times to repeat the

next element in the definition. Instead of writing:
[i2 i2 2 i2 i2 i2 i2 i2 i2 i2]
it is possible to write:
[10 2]
Similarly, segment definition above could be written as:
[[3 14] [3 14]]
or even:
[2 [3 i4]]

For convenience it is possible to give custom names of native types and block defini-
tions and then use these names in other block definitions. The following example de-
fines byte and int as alternative names for ul and i4.

make "byte "ul
make "int "i4

Thus point and segment could be also defined as:
make "point [int int int]

make "segment [point point]

(2) Blocks

A block is a continuous area in the memory filled with binary data. Neither Lhogho or
any other program or even the processor can tell what actually the meaning of these
data is. When a block is paired to a block definition then Lhogho has a means to in-

72

Lhogho: The Real Logo Compiler User Documentation

terpret the contents of the block as a collection of native data types. In this respect
blocks provide a similar functionality as struct in C and record in Pascal.

The functions described in this section are used to manage memory blocks containing
binary data (i.e. a sequence of bytes). Reading and writing blocks from binary files is
described in page 57.

blocksize :block EN
blocksize :blockdef
packgroBe :block DE

packgroBe :blockdef
Function. Outputs the size of an actual block or a block definition blockdef.

print blocksize [il i2 f4]

7
print blocksize [il i2 [il i8] [ul [ud4 £4]]]
21
listtoblock :1list :blockdef EN
packen :list :blockdef DE

Function. Converts the elements of a list according to the given block definition
blockdef and returns a memory block containing the elements converted to native
format. This corresponds (roughly!) to converting Logo data into a C structure. Data
in a memory block can be converted back to Logo list with blocktol ist function.

make "Byte "ul

make "Float "f4

make "struct listtoblock [1 [2 2.5]] [Byte [Float Float]]
print blocktolist :struct [Byte [Float Float]]

1 [2 2.5]

If input data are less than the required by blockdef all empty slots in the memory
block are set to 0.

make "a listtoblock [10 [5]] [u2 [u2 u2 u2] u2 u2]
print blocktolist :a [u2 [u2 u2 u2] u2 u2]
10 [500] 00

listintoblock :data :block :blockdef EN
listintoblock :data :address :blockdef
packenzu :data :block :blockdef DE

packenzu :data :address :blockdef

Command. Converts data according to the given block definition blockdef into
destination block or address. The second input should be either a block or an inte-
ger number for a memory address. Converting to destination requires that there is

-73-

Lhogho: The Real Logo Compiler User Documentation

enough space for all data. Otherwise extra data may overwrite essential data and make
the whole system unstable.

make "pair [[il il] [il il]]

make "a listtoblock [[1 2] [3 4]] :pair
print blocktolist :a :pair

[12] [38 4]

listintoblock [[11 12] [13 14]] :a :pair
print blocktolist :a :pair

[11 12] [13 14]

blocktolist :block :blockdef EN
blocktolist :address :blockdef
entpacken :block :blockdef DE

entpacken :address :blockdef

Function. Converts into a list data stored in block or at given memory address ac-

cording to blockdef.

make "Byte "ul

make "Float "f4

make "struct listtoblock [1 [2 2.5]] [Byte [Float Float]]
print blocktolist :struct [Byte [Float Float]]

1 [2 2.5]

Together with dataaddr this function can be used to peek the raw structure of Logo
data. The following example prints the reference count of a Logo datum. This count is
unsigned 32-bit integer stored at the beginning of each Logo datum.

make "a [one two]
make "b blocktolist dataaddr :a [u4]
(print [Reference count] first :b)

Reference count 3

The tandem listtoblock and blocktolist can be used to split and join integer
numbers. The next example demonstrates the values of the four bytes in a 32-bit inte-
ger.

make "a listtoblock [1000] [i4]
print blocktolist :a [ul ul ul ul]
232 3 00

(3) Shared libraries

This section describes functions that can be used to manage functional communica-
tion between Lhogho and external non-Lhogho compiled functions in shared or dy-
namic libraries.

74

Lhogho: The Real Logo Compiler User Documentation

libload :libname EN
bibliothekladen :libname DE

Command. Loads dynamic/shared library with file name given by libname. If the
name is without extension then the default extension for the current operating system
will be used (*.DLL for Windows and *.SO for Linux). If the name contains a path,
then the library is searched in this path. Otherwise the library is searched in the de-
fault for the operating system places. The returned value is an OS-dependent handle
(i.e. a number) which identifies the loaded library.

make "handle libload "testlib
if :handle = 0
[print [TestLib not loaded]]
[print [TestLib loaded]]
TestLib loaded

libfree :handle EN
bibliothekfrei :handle DE

Command. Unloads dynamic/shared library. The input should be the handle returned
by libload when the library has been loaded for the first time.

make "handle libload "testlib
libfree :handle

external :name :prototype :handle EN
extern :name :prototype :handle DE

Command. Defines that function called name corresponds to an external function with
given prototype and its binary code is in a library corresponding to handle. The
prototype is a list in this format: [result extname paraml param2 ..] where
result is the type name of the result (it could be native or user-defined), extname is
the name of the external function the way it is exported by the library. The rest ele-
ments paraml, paramz2, etc are the type names of the parameters.

In the example, the Lhogho definition of byteadd creates an empty function, which
is bound to addup function from testlib.so or testlib.dll. The external func-
tion (that might have been compiled in C) uses two parameters, which are unsigned
bytes, and produces a result, which is also an unsigned byte.

make "handle libload "testlib

to byteadd :a :b

end

external "byteadd [ul addub ul ul] :handle
print byteadd 100 100

200

-75-

Lhogho: The Real Logo Compiler User Documentation

libfree :handle

The external command helps Lhogho to use external functions. During the execu-

tion, Lhogho does the following steps:

e [t converts inputs, which are in Logo data format, into native format
e [t calls the external function providing the native data
e Ifreceives the result of the function (a native datum)

e Converts the result into a Logo datum.

internal :name :prototype EN

intern :name :prototype DE

Command. Defines that function called name is a Logo function which will be called
by an external function written in another language. The prototype defines the na-
tive data type of the result and the inputs of the Logo function: [result paraml
param?2 ..] where result is the type name of the result (it could be native or user-
defined), paraml, param?2, etc are the type names of the parameters.

The internal command helps Lhogho to define a function that is called by non-
Lhogho functions (e.g. callbacks). During the execution, Lhogho does the following
steps:

e [t converts inputs, which are in native data format, into Logo format
e [t calls the Lhogho function providing the Logo data
e Ifreceives the result of the function (a Logo datum)

e Converts the result into a native datum and returns it to the calling function.

funcaddr :name EN
funktionadr :name DE

Function. Returns the address of the compiled body of function with a given name.
The result can be used in hook functions — i.e. functions from a shared library that
calls a Lhogho function by its address.

In the following example the external function apply calls directly the compiled code

of add or sub, which are defined completely as user functions.

if equal? :logoplatform "Windows
[make "l1lib libload "testlib]
[make "1lib libload "./libtestlib.so]

to apply.func :func :argl :arg2
end

76

Lhogho: The Real Logo Compiler User Documentation

to add :x :y
output :x+:y
end

to sub :x :y
output :x-:y
end

external "apply.func [i4 apply p4 i4 i4] :1ib
internal "add [i4 i4 i4]
internal "sub [i4 i4 i4]

print apply.func funcaddr "add 10 5
print apply.func funcaddr "sub 10 5

libfree :1lib

dataaddr :thing EN
packadr :thing DE

Function. This function returns the address of memory block where the Logo data of
thing is stored. The address of Logo data can be used to manage the internal repre-
sentation of Logo data. However, this is dangerous as long as going to invalid address
or writing inappropriate data may lead to a system crash.

The following example demonstrates that two variables with the same value do not

necessarily share the same memory.

make "a 45.8+1

make "b 44.8+2

make "c :a

(print equal? dataaddr :a dataaddr :b)
false

(print equal? dataaddr :a dataaddr :c)
true

(4) System stack

_int3 EN, DE

Command. Generates a software interrupt. This command is useful only when
Lhogho is being debugged with an external debugger, which understands software
interrupts. Using _int3 without debugger will cause the program to terminate with

an exception.

-77-

Lhogho: The Real Logo Compiler User Documentation

_stackframe :frame :offset EN, DE

Function. Returns an integer number, which is found at an offset of a stack frame.
Frame 0 is the stack frame of the currently executing procedure (the one, which uses
_stackframe). Each procedure has two parent procedures (which could be different
or the same) — a static parent and a dynamic parent. The static parent is the parent
procedure that has the current procedure defined as a local procedure. The static par-
ent of a procedure can never change once a Logo program is compiled. The dynamic
parent is the procedure that called the current procedure. During the lifetime of a pro-
cedure it may have different dynamic parents (depending on which other procedures
use it).

If frame is greater than 0 it denotes a static parent, 1 means the static parent, 2 means

the static parent of the static parent and so on.

If frame is negative it denotes a dynamic parent, -1 means the dynamic parent, -2
means the dynamic parent of the dynamic parent and so on.

For portability offset is always measured in terms of the processor-specific data
size, which is large enough to hold a memory address. Thus, offset is not measured
in bytes.

The function _stackframe can be used to get the number of actual inputs of a pro-
cedure.

to inputs
output _stackframe -1 2

end

to test :a :b
print inputs

end

test 1 2

2

(test 1 2 3 4 5 6)
6

_stackframeatom :frame :offset EN, DE

Function. This function is the same as _stackframe, except that it assumes the ex-
tracted value from the offset in the given stack frame is a Lhogho datum — number,
word or list. Use _stackframeatom to get only data which is guaranteed to be
Lhogho data; otherwise the user program may stop working.

78

Lhogho: The Real Logo Compiler User Documentation

The next example retrieves the values of all actual inputs of a user-defined command.
Note that the physical order of the inputs places inputs in reversed order and named
inputs are positioned before the others.

to inputs
output _stackframe -1 2

end

to input :n
output _stackframeatom -1 2+:n

end

to test :a :b
repeat inputs [type input repcount]
(print)

end

test 1 2

21

(test 1 2 3 4 5 6)
216543

-79-

Lhogho: The Real Logo Compiler User Documentation

Chapter 4 Libraries and Applications

Libraries

(1) TGA

The TGA library can be used to create TGA (Targa) image files. Only the most basic
and simpliest file format is supported, i.e. the 24-bit uncompressed RGB format. For
more information about TGA format check:

http://www.fileformat.info/format/tga/egff.htm

tgaopen :filename :width :height

Command. This command creates a new TGA image file called filename and de-

fines its header. The size of the image is set to width and height pixels.

tgawrite :filename :red :green :blue

Command. This command writes a pixel color information to a TGA file created with
tgaopen. The color is defined by three numbers (from 0 to 255) corresponding to the
red, green and blue components of a color in RGB colorspace. The writer file is

automatically set to the fi lename.

tgaclose :filename

Command. This command closes a TGA file. Closing should be done only when the
exact number of pixels is being written to the file with tgawrite. The number of
pixels is the product of the width and the height of the image, as defined when
tgaopen has been called. For example, if the image is 200x70 pixels, the number of
pixels is 14,000.

load "tga.lgo

tgaopen "image.tga 128 128

for "x [0 127]

[for "y [0 127]

[

make "r round 128+127*sin 10*:x
make "g round 128+127*cos 10*:y
make "b round 128+127*sin :x+:y
tgawrite "image.tga :r :g :b

]

tgaclose "image.tga

80

http://www.fileformat.info/format/tga/egff.htm

Lhogho: The Real Logo Compiler User Documentation

Figure 1 Using TGA library

(2) GL, GLU and GLUT

The GL library provides interface to several libraries related to GL, namely (Open)GL,
GLU and FreeGLUT. These libraries should be available before using the GL library.
Their names are expected to be:

e For Windows: OPENGL32.DLL, GLU32.DLL, FREEGLUT.DLL
e For Linux: IibGL.so, libGLU.so, libglut.so

This section provides a list of supported function. For a complete documentation
about each of them consult their documentation.

Supported GL functions:

-81-

Lhogho: The Real Logo Compiler User Documentation

glFlush

glBegin :mode

glEnd

glMatrixMode :mode
glClear :buffer
glLoadIdentity
glTranslatef :x :y :z
glScalef :sx :sy :sz
glNormalf :sx :sy :sz
glVertex3f :x :y :z
glColor3f :r :g :b
glPointSize :size
glClearColor :r :g :b :a
glRotatef :angle :x :y :z
glRectf :x1 :yl :x2 :y2
glOrtho :left :rigth :bottom :top :near :far
glDrawBuffer :buffer
glGetError

glEnable :mode
glViewport :x :y :w :h
glCallList :list
glEndList

glNewList :list :mode

Additionally the GL library defines these constants: GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER_BIT, GL_POINTS, GL_QUADS, GL_MODELVIEW, GL_BACK,
GL_PROJECTION, GL_DEPTH_TEST, GL_COMPILE, GL_COMPILE_AND_EXECUTE.

Supported GLU functions:

gluLookAt :eyeX :eyeY :eyeZ :cX :cY :cZ :upX :upY :upZ
gluPerspective :fovy :aspect :zNear :zFar

Supported FreeGLUT functions:

82

Lhogho: The Real Logo Compiler

glutFullScreen

glutInit :argc :argv
glutCreateWindow :caption
glutCreateSubWindow :window :x :y :width
glutMainLoop
glutLeaveMainLoop
glutInitDisplayMode :mode
glutDisplayFunc :func
glutIdleFunc :func
glutKeyboardFunc :func
glutSpecialFunc :func
glutMotionFunc :func
glutMouseFunc :func
glutReshapeFunc :func
glutReshapeWindow :x :y
glutPostRedisplay
glutSwapBuffers
glutSetCursor :cursor
glutSetWindow :window

User Documentation

:height

Additionally the GL library defines these constants: GLUT_DOUBLE, GLUT_RGB,

GLUT_DEPTH.

Except for interface to GL(U(T)) libraries, GL defines additional functions and com-

mands:

glHook :type :func

Command. Defines that function with name the value of func is responsible to a call-
back link. I.e. the FreeGLUT library will call the hooked Lhogho user-defined com-

mand to handle specific events.

glHook is practically equivalent to defining that func is internal and then registering

it with the appropriate call-back function from FreeGLUT. The hook function is de-

termined by type, which can be any of the words idle, special, keyboard, dis-

play, and reshape.

The following code:
to kbd :key :x :y
if equal? :key 27 [glutLeaveMainLoop]
end
internal "kbd [v0 il i4 i4]
glutKeyboardFunc funcaddr "kbd

is equivalent to:

-83-

Lhogho: The Real Logo Compiler User Documentation

to kbd :key :x :y
if equal? :key 27 [glutLeaveMainLoop]
end

glHook "keyboard "kbd

Note that glHook must be called only if func is a user-defined command that is not
internalized with the internal command. If you need to hook an internal function,
then use directly the corresponding glut???Func. where ??? stands for type.

For an example of how to use GL hooks and GL in general, check the Cube3d applica-
tion.

(3) Euler

The Euler library provides numerical functions for integers of arbitrary length as

well as other functions like sorting and permutation.
sort :value

Function. Outputs the input rearranged into alphabetical or numerical order. If the in-
put is a number or word, the characters are ordered from 0 to z. If the input is a list of
words they are ordered alphabetically, if a list of numbers, they are ordered by size. If
the input is a list of numbers and words, the numbers are ordered first by size fol-
lowed by the words ordered alphabetically. If the input is a list of lists, the sublists are
ordered internally, but the list order is unchanged. If the input is a list of lists and
numbers or words or both, the lists, ordered internally, are moved to the left followed
by the remainder ordered as in previous cases.

print sort 132546

123456

print sort "b2a5c4

245abc

show sort [2 13 a ¢ 3 b 1]

[1 2313 abc]

show sort [2 3 a [2 3 2 1] ¢ 3 b 1]
[[1223]1233abc]

The maximum length of the input is about 10 000 members for a list of numbers but
this drops to about 250 otherwise. The procedure uses a partition sort in the former
case and a selection sort in the latter.

factors :value
Function. Outputs a list of the factors of its input which must be a positive integer.

show factors 36
[123 469 12 18]

84

Lhogho: The Real Logo Compiler User Documentation

show factors 1

L1

perms :value

Function. Outputs a list of the permutations of its input word or number. The number
of permutations is n! where n is the length of the input.

show perms 123
[123 132 231 213 312 321]

Note, that for long inputs the number of permutations may be too big to fit in the
available memory.

allperms :value

Function. Outputs a list of all the permutations of its input word or number and its
subsets. The last member is the empty word.

show allperms 123

[123 12 132 13 1 231 23 213 21 2 312 31 321 32 3]
show count allperms "a

2

prperms :value

Command. Prints each of the permutations of its input word or number. The number
of permutations is n! where n is the length of the input.

prperms "gas
gas

gsa

asg

ags

sga

sag

prperms 1

1

prallperms :value

Command. Prints each of the permutations of its input and the subsets of its input.
The last one printed is the empty word.

prallperms "gas
gas

ga

gsa

gs

g

-85-

Lhogho: The Real Logo Compiler User Documentation

asg
as
ags
ag
a
sga
sg
sag
sa

ppt :value

Function. Outputs a list of primitive Pythagorean triples generated from [3 4 5] using
a UAD Tree”. Each triple in a level generates three triples in the next level. The input,
which must be a non-negative integer, specifies the number of levels to generate. The
UAD tree contains only primitive Pythagorean triples (i.e. 3, 4, 5 but not 6, 8, 10) and
generates all primitive Pythagorean triples, i.e. any primitive Pythagorean triple will
eventually be generated by using enough levels of the UAD tree.

show ppt 2

[[3 4 5] [5 12 13] [21 20 29] [15 8 17] [7 24 25] [55 48 73]
[45 28 53] [39 80 89] [119 120 169] [77 36 85] [33 56 65]
[65 72 97] [35 12 37]1]

print count ppt 7
3280

A commandlist stored in a variable named “"uadrun will be executed once for each
generated triple. Each generated triple is created and stored as part of a group of three
using the variables :utriple, :-atriple and :dtriple. An example of the use
of :uadrun, below, calculates the percentage of triples up to generated level 5

whose element sum is divisible by 10 (an example is 5, 12, 13 with element sum 30)

local "divbylO0

make "divbylO O

make "uadrun [
if O=last(sumlist :utriple) [make "divbyl0 1+:divby1l10]
if O=last(sumlist :atriple) [make "divbyl0 1+:divby10]
if O=last(sumlist :dtriple) [make "divbyl0 1+:divby10]

Knott R., Pythagorean Triangles and Triples: The UAD Tree of Primitive Pythagorean Triangles;
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html#uadgen

86

Lhogho: The Real Logo Compiler User Documentation

1
local "total

make "total count ppt 5
(pr :divbyl0 "/ :total "= word :divbyl0/:total*100 "%)
111 / 364 = 30.4945054945055%

Note that the "seed" for the UAD tree, [3 4 5] must be considered separately. It is
counted in :total but is not examined as part of -uadrun.

prppt :value

Command. Prints a listing of primitive Pythagorean triples generated from [3 4 5]
using a UAD tree. Each triple in a level generates three triples in the next level. The
input, which must be a non-negative integer, specifies the number of levels to gener-
ate. The UAD tree contains only primitive Pythagorean triples (ie 3,4,5 but not 6,8,10)
and any primitive Pythagorean triple will eventually be generated by using enough
levels of the UAD tree.

prppt O

[3 4 5]

prppt 2

[3 4 5]

[6 12 13] [21 20 29] [15 8 17]

[7 24 25] [55 48 73] [45 28 53] [39 80 89] [119 120 169] [77
36 85] [33 56 65] [65 72 97] [35 12 37]

A commandlist stored in a variable named ""uadrun will be executed for each gener-
ated triple (see further discussion under procedure ppt).

fibonacci :digitlimit

Function. Outputs a list of Fibonacci numbers® up to the specified maximum digit
length. Provides for "long integers" to an arbitrary number of digits in the answer.

show fibonacci 2

[1 1235813 21 3455 89]
show count fibonacci 500
2394

A commandlist stored in a variable named "fibrun will be executed once for each
generated Fibonacci number. The generated number can be accessed through the vari-
able :current. An example of the use of :fibrun, below, determines how many
Fibonacci numbers up to 100 digits in length do not contain the digit 6.

3 Chandra, Pravin and Weisstein, Eric W. Fibonacci Number. From MathWorld — A Wolfram Web
Resource. http://mathworld.wolfram.com/FibonacciNumber.html

-87-

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html#uadgen

Lhogho: The Real Logo Compiler User Documentation

local "n

make "n O

make "fibrun [if not member? 6 :current [make "n 1+:n]]

make "tot count fibonacci 100

(pr :n "/ :tot [fibs up to 100 digits long don’t contain 6])
57 / 480 fibs up to 100 digits long don"t contain 6

sumlist :list
Function. Outputs the sum of the elements of its input list.

print sumlist [1 2 3 4]

10

print sumlist [1.1 2.2 3.3]
6.6

sumlistl :list

Function. Outputs the sum of the elements of its input list. It provides for "long inte-
gers" which can be of arbitrary length. Any member of the input list that is not in the
form of an integer will cause the sum to terminate at that point.

print sumlistl [1 99999999999999999999999999999999 1]
100000000000000000000000000000001
print sumlistl [1 2 3.1 4]
3
integerp :value
integerp? :value
Function. Outputs true if the input is an integer, false otherwise. Maximum integer
value is 9223372036854775296 (approx 9.22e18)

print integerp 123
true

print integer? "123
true

print integerp "123s
false

print integer? 9.22el8
true

print integer? 9.23el8
false

88

Lhogho: The Real Logo Compiler User Documentation

lessthanp :value :value
lessthan? :value :value
Function. If both inputs are numbers, outputs true if the first input is numerically
smaller than the second, false otherwise. If either or both inputs are not numbers,

outputs true if the first comes alphabetically before the second.

print lessthanp 4 123
true

print lessthan? "d "abc
false

gced :value :value

Function. Outputs the greatest common divisor® (highest common factor) of its inputs.
Both must be integers and the result is an integer with the same sign as the smaller
valued one.

print ged 35 14
7
print gecd -3 8
-1
palindromep :value
palindrome? :value
Function. Outputs true if the input word or list is a palindrome, i.e. the same for-

wards as it is backwards, False otherwise.

print palindromep "level
true

print palindrome? "a

true

print palindrome? "abc
false

print palindrome? [a bbc a]

true

decrement :value

Function. Outputs a word that is numerically one less than its input which must be in
the form of an integer. It provides for "long integers" which can contain an arbitrary
number of characters.

print decrement 6

* Weisstein, Eric W. Greatest Common Divisor. From MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/GreatestCommonDivisor.html

-80-

Lhogho: The Real Logo Compiler User Documentation

5

print decrement "99999999999999999999999
99999999999999999999998

print decrement '-999999999990999999999999
-100000000000000000000000

Failure to quote the input can lead to incorrect results if the value lies outside
Lhogho’s integer limit (~ 9.22¢18)

print decrement 99999999999999999999999 ; this is wrong
99999999999999991999999

increment :value

Function. Outputs a word that is numerically one more than its input which must be in
the form of an integer. It provides for "long integers" which can contain an arbitrary
number of characters.

print increment 5

6

print increment "99999999999999999999999
100000000000000000000000

print increment "-99999999999999999999999
-99999999999999999999998

Failure to quote the input can lead to incorrect results if the value lies outside
Lhogho’s integer limit (~ 9.22¢18)
show increment 99999999999999999999999 ; this is wrong
99999999999999992000001

primep :value
prime? :value

Function. Outputs true if the positive integer input is prime, false otherwise.
print primep 17
true
print prime? 1
false
A global variable named ""primes exists with initial value [2 3 5] that is used in
this procedure and in the procedure prime.factors to store the list of primes. Ad-

ditional primes are automatically added to this variable (up to the square root of the
input) as needed using the procedure generate .primes.

show :primes
[2 3 5]
print primep 1001

90

Lhogho: The Real Logo Compiler User Documentation

false
show :primes

[2 357 11 13 17 19 23 29 31 37]

prime. factors :value
Function. Outputs a list of the prime factors of its input.

show prime.factors 21
[3 7]

show prime.factors 48
[2 2 2 2 3]

show prime. factors 1

1

generate.primes :value
Function. Outputs a list of all the primes less than its input plus the next one.

show :primes

[2 3 5]

make "primes generate.primes 70

show :primes

[2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71]
print count generate.primes 10000

1230

This procedure begins with the existing :primes rather than re-generating from the
start so a pre-calculated list of primes can be used and generate.primes will sim-
ply add to it as required rather than re-calculating from scratch.

add :value :value

Function. Outputs the sum of its inputs. It provides for "long integers" which can be
of arbitrary length. The inputs should always be quoted if entered explicitly, otherwise
erroneous results can occur. If either input is not in the form of an integer, the value
output is 0.

print add "1 "2

3

print add "99999999999999999999999 "99999999999999999999999

199999999999999999999998

print add "1.1 "2

0

prod :value :value

Function. Outputs the product of its inputs. It provides for "long integers" which can
be of arbitrary length. The inputs should always be quoted if entered explicitly, oth-

-O1-

Lhogho: The Real Logo Compiler User Documentation

erwise erroneous results can occur. If either input is not in the form of an integer, the
value output is 0.

print prod "3 "2

6

print prod "99999999999999999999999 "99999999999999999999999

9999999999999999999999800000000000000000000001

print prod "1.1 "2

0

factorial :value

:value !

Function. Outputs the factorial® of its input. Provides for "long integers" to an arbi-
trary number of digits in the answer.

print factorial 4 ; 4x3x2x1
24

print 28 !
304888344611713860501504000000

ncr :n :r
binomial :value value

Function. Outputs "n choose r" or the binomial coefficient® specified by its inputs, i.e.
n!

ri(n—r)
print ncr 6 2
15

print binomial 50 25
126410606437752

, as represented in Pascal’s triangle.

rotatel :value

Function. Outputs its input rotated to the left by one, ie with the first element moved
to the end.

show rotatel 1234
2341

show rotatel [a b c d]
[b c da]

5 Weisstein, Eric W. Factorial. From MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/Factorial.html

® Weisstein, Eric W. Binomial Coefficient. From MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialCoefficient.html

92

Lhogho: The Real Logo Compiler User Documentation

rotater :value
Function. Outputs its input rotated to the right by one, ie with the last element moved
to the beginning.

show rotater 1234
4123

show rotater [a b c d]
[d a b c]

dec2bin :value

Function. Outputs the decimal input number converted to binary representation.

print dec2bin 9

1001

print dec2bin 1048576
100000000000000000000

bin2dec :value
Function. Outputs the binary input number converted to decimal representation. It is
advisable to quote large input numbers (>20 digits).

print bin2dec 1001

9

print bin2dec "100000000000000000000
1048576

dec2hex :value
Function. Outputs the decimal input number converted to hexadecimal representation.

print dec2hex 27

1B

print dec2hex 1048575
FFFFF

hex2dec :value

Function. Outputs the input word in hexadecimal number format converted to decimal
representation.

print hex2dec "1b

27

print hex2dec "FFFFF
1048575

list2word :value
Function. Outputs a word formed by concatenating the words in the input list.

print list2word [no w he re]

-03.

Lhogho: The Real Logo Compiler User Documentation

nowhere
print word list2word [1 2 3] 10
12310

word2list :value
Function. Outputs a list of the characters or digits in the input word or number.

show word2list "now
[n o w]

show word2list 99*99
[9 8 0 1]

Applications

Applications described in this section are Lhogho programs that can be compiled and
used as standalone applications. Each application can be run by Lhogho, but can also
be compiled in a standalone executable and be used without Lhogho.

To run an application with Lhogho (and without compiling it into a standalone execu-
table file), use the command:

lhogho app params

Where app is the name of the source code of the application (together with the file

extension . Igo) and params are the parameters given to the application.
To create a standalone executable application use the command:
lhogho -x app

which will create file app . exe (in Windows) or app (in Linux). To use this file exe-
cute it as any other application:

app params

(1) Hello World

This application is the famous Hello World program. It just prints the text Hello
world.

hello
Hello world

(2) Simple CLI

CLI stand for command-line interpreter. CL1 . Igo implements a simple CLI, which

accepts one-line commands. The command prompt is Lhogho>. To exit the inter-

94

Lhogho: The Real Logo Compiler User Documentation

preter type RETURN key without any command. Note that this CLI accepts only com-

mands on a single line.

cli

Lhogho> make "a 100

Lhogho> print :a

100

Lhogho> to mid :x output :x/2 end
Lhogho> make b mid mid :a
Lhogho> print :b

25

Lhogho>

(3) Prime Numbers

The application Primes is used to print the primes numbers up to a given upper
boundary. It is based on a simple search for primary numbers by building a list of al-

ready found primes.

primes
Lhogho Primes 1.0 - Prints the prime numbers up to a limit
Usage: primes limit

The application requires a single parameter — the upper limit. It will print all prime
numbers from 2 to the upper limit (inclusive). To get the prime numbers not greater

than 40, execute this command:

primes 10
2357

primes 100
2357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97

primes 500

2 357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157
163 167 173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
337 347 349 353 359 367 373 379 383 389 397 401 409 419 421
431 433 439 443 449 457 461 463 467 479 487 491 499

-05-

Lhogho: The Real Logo Compiler User Documentation

(4) Calculator

The application Calc is used to calculate a mathematical expression. The expression

is provided as one or more parameters to the application.

calc
Lhogho Calculator 1.0 - Calculates a mathematical expression
Usage: calc "expression"

It is better to frame the expression in double quotes; otherwise the current shell may
try to parse them. Simple expression without parentheses does not require double
quotes:

calc 1+2+3
6

calc "10*(sin 30) - 1/2"
4.5

calc exp 1
2.71828182845905

(5) Square Root

The application Sqrt is used to calculate the square root of a number with the New-
ton’s method.

lhogho sqgrt.lgo

Lhogho SquareRoot 1.0 - Calculates square root with Newton®s
method

Usage: sqgrt number

The application requires a single parameter — a positive number. It will print all itera-
tions starting from 1 until the difference between two successive iterations becomes

too small. The last printed iteration is the final calculation:

sgrt 2
-> 1
-> 1.5
-> 1.41666666666667
-> 1.41421568627451
-> 1.41421356237469
-> 1.41421356237309
sgrt 121

96

Lhogho: The Real Logo Compiler User Documentation

-> 1

-> 61

-> 31.49180327868853
-> 17.66703646495592
-> 12.25797485371191
-> 11.06454984414054
-> 11.00018828973782
-> 11.00000000161147
-> 11

(6) Cube3D

Cube3D is a graphical application animating a cube rotation using OpenGL com-
mands. The animation can be accelerated or slowed down by pressing left or right ar-
rows. ESC key closes the application.

lhogho cube3d.lgo

Cube3D - A rotating OpenGL cube

Press ESC to exit

Use left and right arrows to change speed

Figure 2 Snapshot of the Cube3D application

(7) Mandelbrot

Mandelbrot is a graphical application drawing the Mandelbrot set fractal. Parame-
ters of the program control which area of the set is explored, as well as at what magni-
fication and color scheme. One the application is started users may zoom in (with a
click of the left mouse button), zoom out (click with the right mouse button) or exit
the application (by pressing the ESC key).

The parameters of Mandelbrot are not compulsory. They are:

e width — width of the graphical window in pixels (default value 600)

-97-

Lhogho: The Real Logo Compiler User Documentation

e height — height of the graphical window in pixels (default value 400)
e center x— abscissa of the central point (default value 0)

e center y - ordinate of the central point (default value 0)

e scale —zoom factor (default value 100)

e loops — number of repetitions of color band (default value 1)

e bandname — the name of a color band as defined in mandelbrot.colors.lgo (de-

fault value is rainbow)

The size of graphical window is set by the command line parameters, but the operat-
ing system determines the actual size of the window following the GUI policies. Thus,
width and height define only the desired windows size.

The command line parameters for center x and y shifts the viewing area in a way

that this center matches the center of the graphical window.

The initial zoom factor is defined by scale. Scale equal to 1 sets one mathematical
unit length to be one pixel. Because the Mandelbrot set fits in a circle with radius 2,
scale 1 will make the fractal just few pixels big. A starting scale of 100 or 150 is sug-
gested for viewing the whole Mandelbrot set.

The precision of floating point operations in Lhogho permits scaling up to 10'°. Lar-
ger scales produce images with artifacts. While zooming in or out the current scale is
displayed in the caption of the graphical window.

Clicking with the left mouse button restarts fractal drawing at a ten times higher scale
and a new center point (defined by the click location). Zooming out with the right
mouse button switched to a 10 times smaller scale.

While the mouse I moved over the graphical window, a small rectangle shows the
area which will be visible if zoomed in. To hide this rectangle move the mouse
pointer near the top of bottom area of the graphical window.

Drawing Mandelbrot set computes a number for each pixel. This number determines
the color of the pixel. Colors for all possible values are defined as bands in an external
file nandelbrot.colors. Igo. Each band is defined as a list which first element is
the background color (it is used for every pixel with undetermined color). The next
parameters are pairs of color index and colors. Color indices must be in ascending or-
der. Colors which fall in-between two indices are interpolated. For example, the de-
fault rainbow band is defined as:

98

Lhogho: The Real Logo Compiler User Documentation

(make ""band.rainbow [

[0 O O] ; background
000 [0 0 0] ; black

100 [1 O O] ; red

200 [1 1 O] ; yellow
300 [0 1 O] ; green

400 [0 1 1] ; cyan

500 [0 O 1] ; blue

600 [0 0 O] ; black

D

which corresponds to this color band:

0 100 200 300 400 500 600
\ \ \

Figure 3 Default rainbow color band

There are three predefined bands — rainbow (default), bw and gold.

The loop parameter defines how many tiled bands will be used. If it is one, then only
1 band is considered. In the case of rainbow band, all pixels for which calculated
value is above 600 are treated as pixels with background color. If 1oops is 5, then the
rainbow band is tiled five times and pixels with value up to 3000 (i.e. loopsxbandsize)
will pick color from the band. Note that rainbow band tiled 5 times will have 5 areas
with reds, yellows, greens, etc. Longer bands and higher loop counts make calcula-

tions much slower especially if there are many areas with background colors.

mandelbrot 600 600 -1 0 200 1 bw

Figure 4 The whole Mandelbrot set based on the bw color band

The next example shows full-length command line parameters (both lines are actually
a single long line):

-90.

Lhogho: The Real Logo Compiler User Documentation

mandelbrot 600 600 -0.74662112123098 -0.11151627135542 3el4
10 gold

Figure 5 The gold color band and extreme zoom of 3"

mandelbrot 600 600 -0.1185105 -0.8830802 le7 2 rainbow

Figure 6 The rainbow band

100

Lhogho: The Real Logo Compiler User Documentation

Chapter 5 Appendices

Format strings

This appendix lists format strings used by format (for numbers) and formattime
(for times and dates). For more details about the strings and discussion about subtle
nuances check an online documentation about GCC functions printf() and
strftime().

(1) Format strings for numbers

Format Explanation
%d | An integer as a signed decimal number.
%1 | An integer as a signed decimal number.
I %U | An integer as an unsigned decimal number.
MCET iox [An inte igned hexadecimal number with lower-case lett
ger as an unsigned hexadecimal number with lower-case letters.
%X | An integer as an unsigned hexadecimal number with upper-case letters.
%0 | An integer as an unsigned octal number.
%T | A floating-point number in normal (fixed-point) notation.
%e | A floating-point number in exponential notation with lower-case letters.
%E | A floating-point number in exponential notation with upper-case letters.
%g | A floating-point number in either normal or exponential notation, which-
Floating ever is more appropriate for its magnitude with lower-case letters.
point %G | A floating-point number in either normal or exponential notation, which-
ever is more appropriate for its magnitude with upper-case letters.
%a | A floating-point number in a hexadecimal fractional notation which the
exponent to base 2 represented in decimal digits with lower-case letters.
%A | A floating-point number in a hexadecimal fractional notation which the
exponent to base 2 represented in decimal digits with upper-case letters.
Char %cC | A single character.
%C | A single UTF-16 character.
. %S | A string.
String %S | A UTF-16 string.
Pointer | %P | A pointer (i.e. an address in the memory).

(2) Format strings for date

Format Explanation

%D | The date using the format %m/%d/%y.

Date | %F | The date using the format %Y -%m-%d.

%X | The preferred date representation for the current locale.

Century | %C | The century of the year.

%g | The year corresponding to the week number (00...99).

%G | The year corresponding to the week number.

Y
car %Yy | The year without a century as a decimal number (00...99).

%Y | The year as a decimal number.

Month | %b | The abbreviated month name according to the current locale.

-101-

Lhogho: The Real Logo Compiler User Documentation

%B | The full month name according to the current locale.
%h | The abbreviated month name according to the current locale.
%m | The month as a decimal number (01...12).
%a | The abbreviated weekday name according to the current locale.
%A | The full weekday name according to the current locale.
The week number of the current year (00... 53), starting with the first Sunday
%U | as the first day of the first week. Days preceding the first Sunday in the year
Week are considered to be in week 00.
. The week number (01...53). Starts with Monday and end with Sunday. Week
01 of a year is the first week which has the majority of its days in that year.
The week number (00...53), starting with the first Monday as the first day of
%W | the first week. All days preceding the first Monday in the year are considered
to be in week 00.
%d | The day of the month (01...31).
%e | The day of the month padded with blank (1... 31).
Day | %J | The day of the year (001...366).
%u | The day of the week (1...7), Monday being 1.
%W | The day of the week (0...6), Sunday being 0.

(3) Format strings for time

Format Explanation
%Z | The time zone abbreviation (empty if the time zone can't be determined).
Zone | %z | RFC 822/ISO 8601:1988 style numeric time zone (e.g., -0600 or +0100), or
nothing if no time zone is determinable.
%r | The complete calendar time using the AM/PM format of the current locale.
%T | The time of day using decimal numbers using the format %H:%M:%S.
Time | %R | The hour and minute in decimal numbers using the format %H:%M.
%C | The preferred calendar time representation for the current locale.
%X | The preferred time of day representation for the current locale.
%p | Either ‘AM’ or ‘PM” if the current locale supports ‘AM’/‘PM’ format, empty
AM/PM | st.ring otherwise. .
%P | Either ‘am’ or ‘pm’ if the current locale supports ‘AM’/‘PM” format, empty
string otherwise.
%H | The hour using a 24-hour clock (00...23).
Hour %l | The hour using a 12-hour clock (01...12).
%K | The hour using a 24-hour clock padded with blank (0...23).
%0 | The hour using a 12-hour clock padded with blank (1...12).
Minute | %M | The minute (00...59).
Second %S | The number of seconds since 1970-01-01 00:00:00 UTC.
%S | The seconds (00...60).

Index of primitives

Lhogho: The Real Logo Compiler

. ashiftccooovviiviiiie 26
AUSSHICE . 67
B
/ backslash?...........ccccoeeiin. 31
backslashed?c..ccoc.u..... 31
L e 20 backslashedp.......cccoeeveuennene 31

backslashp

> s 28
S 29
A

ADS i 23

add ..o 91

ade.viieieieeee e 47

ACT ceeeieeeiiiee et 33

all? oo 32

alle?..veeieeiieiee e 32

alleerstescoevveeveerieennnennne. 33

allopencccceeceeveneenienenne. 52

allpermscoccveveeneeeennnn 85 D
dataaddrccoeevveeiieennene. 77
dateiende?ccoceevverennne. 57
dateiendepccccoevereenrnnnn 57
DE ..ot 64
dec2bin.....ccceveeeeieniieieee 93

User Documentation

dec2heX....ooevvvieieniieieiee 93
decrement...........ccceeeverueenens 89
def oo 61
def? oo 60
define ...coovveeienieieiieiee 61
defined?ccoevvevieeeierinne 60
definedp

definiere

defP o
difference

differenz
dountil.......ccoceeveevieeniennene.

& S
druckeooeevveeiieiiieiieeee,
druckelistenméchtigkeit 64
druckelistentiefe................... 63

entfdup

entferne
entpackencocceveveeneeeenne 74
COF? e 57

Lhogho: The Real Logo Compiler

factorsoeeeveeeeeieeeeeeieeen 84
falsch....cooceeviiiieiiicieee, 11
false...cvevieeiieieee e, 11
fangecoeeeverienenieee 68
fehler.....cooovveeveeneenn, 67,69
fibonacei ...c.eevevereeeieiieienns 87
fI1e? i 50

glCallList ...c.oocevververernrannn 82
glClearcccocevenveieencnnnn 82
glClearColorcccceevuennenne. 82
glColor3 ..o 82
glDrawBuffer...........cccco..... 82
gleich?. ..o 27
gleichp .o..ooveeviiiic 27

filhreaus.solange 44

fullprintpcceevevenererennne. 64

fullteXt..cveererieereiecveieee 66

funcaddr........cccoevverieiennnnnen. 76

funktionadr.........c.ccoeevenennen. 76

fULDIS .o 43
G

GELENVS v 70
gibumgebungsvariable.......... 70
gibumgebungsvariablen....... 70
[4 55741 R 37
GL BACK....cciviiiiiee 82
GL COLOR_BUFFER BITS82
GL_COMPILE 82
GL_COMPILE_AND EXEC

UTE oo 82
GL _DEPTH BUFFER BIT 82
GL DEPTH_TEST 82
GL _MODELVIEW ... 82
GL POINTS....oceireiierenne 82
GL PROJECTION.............. 82
GL_QUADS.... .82
gIBegiN....coceeiieieieieiee 82

glMatrixMode..........cccueunenee. 82
gINewList

glScalef......ccoviiiiiiine 82
glTranslatef...........ccccoeennenn. 82
gluLOoOKAL ..o 82
gluPerspective.........cccceue.. 82
GLUT DEPTH.........ccocnc.. 83
GLUT _DOUBLE................. 83
GLUT RGB.......ccccccevinne. 83
glutCreateSubWindow......... 83
glutCreateWindow 83
glutDisplayFunc................... 83
glutFullScreen
glutldleFunc........cccceoeeuenene.
glutlnit oo
glutlnitDisplayMode............ 83
glutKeyboardFunc 83
glutLeaveMainLoop............. 83
glutMainLoopcccceevennenne. 83
glutMotionFunc 83
glutMouseFunc 83
glutPostRedisplay 83
glutReshapeFunc.................. 83
glutReshapeWindow............ 83
glutSetCursorccceceeuenee. 83
glutSetWindow 83
glutSpecialFunc 83
glutSwapBuffers 83
glVertex3f.....ccoovvevieiinne, 82
glViewportcccceveeeennne. 82

User Documentation

GIOB . 39
SIOBET? .o 28
grofergleich? ... 29
grofergleichpc..coeeenenee 29
GrOBETP .o 28
grundwort?cccevvevennne. 62
grundwortp........ecevevevenenne 62
H
hex2dec....ccooevivineiiiicnne 93
I
I 40
IfelSe. i 41
ffalSe c.ooeeeiecieeec 41
HHUC. e 41
IZNOTE . 48
IZNOTICIC .. 48
incrementcoeeevveeenennnn 90
It 22
11110 o o 88
INLEZETP? v 88
1011501 DRSO 76

K
Klein ..o 39
Kleiner?ccooeevevveeveiennnnns 28
kleinergleich?............ccceeuenne 29
kleinergleichpccccceeueuene 29
KIeInerpcocveveeveeeveeieienecens 28
kombinieren...........cccevueneene 37
kommandozeile.................... 69
L
lade ..o 45
[ANge...eiiiiiiiiieeece 38
Last...oooeiieeeeeee 34
1aStput...ccveeieeereieceeeee 36
JIS1S) o SRR 30
LECIP o 30
[ermne .coeeeiieieieeeee 13
18857 i 28
lessequal?.......cccoeveveeiennnne. 29
lessequalp.......ccceevueveeiennnnne 29
LIESSP vt 28
lessthan?.........ccocoeeveeennnnn 89
lessthanpccoceeeveeecnnne 89

Lhogho: The Real Logo Compiler

1etZteS . .uvvevieceeeveeeieeveee 34 N
libfree......covveevieiieiciecieene 75

libload.......ccccovevieeiieiienen 75

lieSliSte c.vverrerrieiieeie e 57

]iespackung 58 NAMEP...covvvririiiiiiiiiiiiiiiiieeeees 62
liestastencoceevverveevennnnne 57

TieSWOIt ..o 57

lieszeichen..........cccccvevennenne. 56

lieszeichenkette.......ovvvvvvnnnn. 56 notequal?........cccvevreeeeniennnnns 28
LISt e 36 notequalp.......coceeeveeeeeinennene 28
TSE? oo 30 nUMbEI? ..., 30

openfile

logodialektrrerrrrrrre. 63 openread

1020platformeree.. 63 openupdate.........cccevveeeenenne 52
10gOplattform ..., 63 OPENWIILE ... 52
logoversion ''''''''''''''''''''' 63 L s 32

prallpermsccoceeveneenenne

prime.factors..........ccceceeeunene 91
Prime? c..oeeeeeeiiirieieieeeenne 90
primep....

Primitive?......ccoeeverenrenennne 62

Primitivep....c.ccooveverenrenenne 62

User Documentation

PIINt. et 55
printdepthlimit 63
printwidthlimit............c..c... 64
procedure?..........coceveenienneene 62
Procedurepoceevveereruennnnns 62
PIOd. .o 91
Product.....cceecvereeeieriieeieienns 21
produkt........ccccovveiiieieiinenns 21
prozedur?cceveeveniennnnns 62
Prozedurpccovveeveeeueeniennenns 62
PIPETINS .o 85
PIPPL et 87
Q
QUOtEd .oveeieieiieee e 38
QUOLIENT .o 21
QW ettt 22
R

readchar
readchars
(7216 (<) (U
readlistoeeveveeeieiieieieeens

1€adPOS..c.vcureiiriiriieieieieine

readrawlingc...cceeeen. 57
readwordcceevveeeneeen. 57
remainder............ccoveeeeneenns 22

Lhogho: The Real Logo Compiler

1401 1 USRI 44
TUNAE ..o 22
TUNIMACTO ...vveevveeeveeeveenreenes 45
TUNPATSE ..eovvveneeneeeneenneeieneeans 66
runresult.......oooeeeevveeieniennnnn, 45
TW ettt ettt et 57

SENLENCE .oovvveeveeereeereereenenann 36
setread......coeveeeecienieeeenneennn 54
setreadposc.oeevveeveieneenene. 54
15180 § 11 J SR 54

tgaclose

tgaopen
tgawrite

thing....cooveeiereeiereeieie s
thTOW .o
timezone

TO teiitee et 13
toplevelccvininiiiecincnnne 67
TTUC et eeee e 11
TUC cvveeeecee et 44
tUemakrooceeverveeverienenans 45
TUCPATSALZ ..o 66
TUEWETT .o eee e 45
EYPE oot 56

\%
vollelistentiefep...........cevenn. 64
volltext
VOTrher?ooveveveeieiesieienns 29
VOThEIP....ovvieiiriiiciciieiricnne 29

W
WaNL e 11

106

User Documentation

WAL e 48
WATLE .evveeeniiieeeiieeeiieeeniveeeeans 48
7S 1)1 WO 40
wennfalsch..........cceeevvenen. 41
WENNSONSE ..vvveeieeiieiieeiene 41
WENNWaNT.......ccverreeereienenans 41

WIILEPOS evevveeeeieieeiieienieans 55

WITEET e 54

WW cooieitenienieeeenieeee s sieens 41
Z

	Chapter 1 Introduction
	General information
	(1) About Lhogho
	(2) License

	Quick start
	(1) Getting Lhogho
	(2) Using Lhogho
	(3) Non-English Lhogho

	Scripting
	(1) Windows console
	(2) Linux console

	Compiling the compiler
	Additional information

	Chapter 2 Syntax and Tokenization
	Logo syntax
	(1) Overview
	(2) Data types
	(3) Parentheses
	(4) Programming entities
	(5) User commands and operations
	(6) Variable number of inputs
	(7) Prefix, infix and postfix notations

	Tokenization of data
	(1) Comments
	(2) Line continuation
	(3) Backslashes
	(4) Bars

	Tokenization of commands
	(1) Special characters
	(2) Parentheses
	(3) Infix operators
	(4) Templates

	Chapter 3 Primitives
	Numerical operations
	(1) Arithmetic operators
	(2) Arithmetic functions
	(3) Rounding
	(4) Exponential and logarithmic functions
	(5) Trigonometric functions
	(6) Random numbers
	(7) Sequences
	(8) Operations with bits

	Predicates and Boolean operations
	(1) Compare predicates
	(2) Type predicates
	(3) Inclusion predicates
	(4) Logical functions

	Word and list operations
	(1) Selectors
	(2) Constructors
	(3) Transformers
	(4) Formatting

	Control structures
	(1) Conditional execution
	(2) Loops
	(3) Execution
	(4) Exits and tags
	(5) Miscallaneous

	Files and folders
	(1) Folders
	(2) Files
	(3) Opening and closing files
	(4) Accessing file contents
	(5) Text input/output
	(6) Binary input/output

	Variables
	Advanced primitives
	(1) Lhogho System variables
	(2) Run-time functions and commands
	(3) Parsers
	(4) Error handling
	(5) OS-related functions

	Low-level access
	(1) Native data types
	(2) Blocks
	(3) Shared libraries
	(4) System stack

	Chapter 4 Libraries and Applications
	Libraries
	(1) TGA
	(2) GL, GLU and GLUT
	(3) Euler

	Applications
	(1) Hello World
	(2) Simple CLI
	(3) Prime Numbers
	(4) Calculator
	(5) Square Root
	(6) Cube3D
	(7) Mandelbrot

	Chapter 5 Appendices
	Format strings
	(1) Format strings for numbers
	(2) Format strings for date
	(3) Format strings for time

	Index of primitives

